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Abstract

Augmented Reality provides an entertaining means for displaying 3D reconstruc-
tions of ancient buildings in situ for cultural heritage. Finding the pose, position
and orientation, of the user is crucial for such applications since this information
will be used to define the viewpoint that will be used for rendering the models.
Images acquired from a camera can be used as the background for such augmen-
tations. To make the most out of this available information, these images can also
be utilized to find a pose estimate.

This thesis presents contributions for vision-based methods for estimating the
pose of the user in both indoor and outdoor environments. First an evaluation of
different feature detectors is presented, making use of spatial statistics to analyse
the distribution of the features across the image, a property that is shown to affect
the accuracy of the homography calculated from these features.

An analysis of various filtering methods used for tracking was performed and
an implementation of a SLAM system is presented. Due to several problems faced
with this implementation, there is insufficient tracking accuracy due to linearity
problems. An alternative, keyframe-based tracking algorithm is presented.

Continuing with vision-based approaches, Kinect sensor was also used to find
the pose of a user for in situ augmentations making use of the natural features
in the environment. Skeleton-tracking was also found to be beneficial for such
applications.

The thesis then investigates combining the vision-based estimates with mea-
surements from other sensors, GPS and IMU, in order to improve the tracking
accuracy in outdoor environments. The idea of using multiple models was investi-
gated using a novel fuzzy rule-based approach to decide on the model that results
in improved accuracy and faster convergence for the fusion filter.

Finally, several AR applications are presented that make use of these methods.
The first one is for in situ augmentation for displaying historical columns and
augmenting users, the second is a virtual visit to an ancient building and the
third is a game which can also be played inside the augmentation of the building
in the second application.
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and Şahabettin Eser and all my relatives for their support.

Finally, I also cannot express my gratitude to my other half, Betül, for her

constant and never-ending love, unlimited patience and great support throughout

years.

ii



CONTENTS

Abstract i

Acknowledgements ii

List of Abbreviations vii

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Motivation and Approach . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review and Background 11
2.1 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Cameras and camera calibration . . . . . . . . . . . . . . . 14
2.1.2 Feature detection and description . . . . . . . . . . . . . . 17
2.1.3 Structure from motion . . . . . . . . . . . . . . . . . . . . 24

2.2 Filtering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Kalman filtering . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Particle filtering . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Simultaneous Localization and Mapping . . . . . . . . . . . . . . 29
2.3.1 SLAM in general . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



2.4 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 Variance analysis . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 Multiple range test . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.1 Cultural heritage applications . . . . . . . . . . . . . . . . 43

2.7 User Tracking Methods for Augmented
Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Problems with Current Approaches . . . . . . . . . . . . . . . . . 58
2.9 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Image Features 63
3.1 Feature Detectors and Descriptors . . . . . . . . . . . . . . . . . . 67
3.2 Homography Estimation . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Spatial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Identifying significant performance differences . . . . . . . 82
3.4.2 Multiple range test . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6 Image Stitching Performance . . . . . . . . . . . . . . . . . . . . . 95
3.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Vision Based User Tracking 104
4.1 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 Filtering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.1 Kalman filtering . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2.2 Particle filtering . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3 A Monocular SLAM Implementation Using EKF . . . . . . . . . . 125
4.3.1 Complete state model . . . . . . . . . . . . . . . . . . . . 126
4.3.2 EKF SLAM phases . . . . . . . . . . . . . . . . . . . . . . 129
4.3.3 Results for EKF SLAM . . . . . . . . . . . . . . . . . . . . 132

4.4 Keyframe Based Motion Estimation . . . . . . . . . . . . . . . . . 137
4.4.1 Assumptions and challenges . . . . . . . . . . . . . . . . . 138
4.4.2 Extraction of keyframes . . . . . . . . . . . . . . . . . . . 141
4.4.3 Finding possible solutions . . . . . . . . . . . . . . . . . . 144
4.4.4 Triangulation of features . . . . . . . . . . . . . . . . . . . 152
4.4.5 Final motion estimate . . . . . . . . . . . . . . . . . . . . 154

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

iv



5 Vision with Depth Sensor 165
5.1 Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.2 Plane Extraction Using Depth Sensor . . . . . . . . . . . . . . . . 171

5.2.1 Finding world coordinates from a depth image . . . . . . . 173
5.2.2 Extraction of planes . . . . . . . . . . . . . . . . . . . . . 175
5.2.3 Re-projection . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.2.4 Performance improvement using parallelism . . . . . . . . 178
5.2.5 Plane extraction results . . . . . . . . . . . . . . . . . . . 178

5.3 Detecting Features for In Situ Augmentation . . . . . . . . . . . . 183
5.3.1 Storing 3D–2D correspondences . . . . . . . . . . . . . . . 183
5.3.2 Finding camera pose . . . . . . . . . . . . . . . . . . . . . 184
5.3.3 Detecting objects for augmentation . . . . . . . . . . . . . 186
5.3.4 Performance of the in-situ augmentation algorithm . . . . 190

5.4 Identifying Body Parts . . . . . . . . . . . . . . . . . . . . . . . . 193
5.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6 Fuzzy Integration of Multiple Sensors 200
6.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.1.1 Global positioning system (GPS) . . . . . . . . . . . . . . 204
6.1.2 Inertial measurement unit (IMU) . . . . . . . . . . . . . . 207
6.1.3 The sensors used in this research . . . . . . . . . . . . . . 210

6.2 Finding Motion Estimates from Sensors . . . . . . . . . . . . . . . 215
6.2.1 Camera motion estimate . . . . . . . . . . . . . . . . . . . 215
6.2.2 GPS position . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.2.3 IMU motion estimate . . . . . . . . . . . . . . . . . . . . . 217

6.3 Sensor Fusion Algorithm . . . . . . . . . . . . . . . . . . . . . . . 221
6.3.1 Fusion filter . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.3.2 Multi-threaded approach . . . . . . . . . . . . . . . . . . . 225
6.3.3 Tracking system . . . . . . . . . . . . . . . . . . . . . . . . 227

6.4 Fuzzy Logic Based Multiple Motion Models . . . . . . . . . . . . 228
6.4.1 Handling the uncertainty in fusion filter . . . . . . . . . . 229
6.4.2 Rule-base definition . . . . . . . . . . . . . . . . . . . . . . 232
6.4.3 Input/Output membership functions . . . . . . . . . . . . 237
6.4.4 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

7 Cultural Heritage Applications 264
7.1 Generating 3D models . . . . . . . . . . . . . . . . . . . . . . . . 267

7.1.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 268

v



7.1.3 Texture baking . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2 The Rendering Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 276

7.2.1 Graphics engine and scene graph . . . . . . . . . . . . . . 276
7.2.2 Rendering on camera images . . . . . . . . . . . . . . . . . 278
7.2.3 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

7.3 Application I: Kinect-Derived In Situ
Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

7.4 Application II: A Visit to Ancient Ephesus . . . . . . . . . . . . . 283
7.5 Application III: An AR Game – Treasure Hunt . . . . . . . . . . 288
7.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

8 Concluding Remarks 293
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

vi



LIST OF ABBREVIATIONS

2D 2-dimensional.

3D 3-dimensional.

ANOVA ANalysis Of VAriance.

AR Augmented Reality.

BRIEF Binary Robust Independent Elementary Features.

CAD Computer Aided Design.

CCD Charge Coupled Device.

CML Concurrent Localization and Mapping.

CMM Constant Motion Model.

CMOS Complementary Metal Oxide Semiconductor.

CPU Central Processing Unit.

CSG Constructive Solid Geometry.

DLT Direct Linear Transformation.

DoF Degree of Freedom.

DoG Difference of Gaussians.

vii



DSP Digital Signal Processor.

E-PnP Efficient Perspective-n-Points.

EBR Edge-based Regions.

ECEF Earth-Centred Earth-Fixed.

EKF Extended Kalman Filter.

FAMM Fuzzy Adaptive Motion Model.

FAST Features from Accelerated Segment Test.

FAST-ER Features from Accelerated Segment Test-Enhanced Repeatibility.

FLANN Fast Library for Approximate Nearest Neighbours.

FLC Fuzzy Logic Controller.

FOV Field Of View.

FPS First Person Shooter.

fps frames per second.

GFT Good Features to Track.

GIS Geographical Information System.

GP Genetic Programming.

GPS Global Positioning System.

GPU Graphical Processing Unit.

HarAff Harris-Affine.

HarLap Harris-Laplace.

HCI Human Computer Interaction.

HesAff Hessian-Affine.

HesLap Hessian-Laplace.

HMD Head Mounted Display.

viii



IBR Intensity-Extrema-based Regions.

IMU Inertial Measurement Unit.

IR Infra-Red.

JCBB Joint Compatibility Branch and Bound.

KF Kalman Filter.

KLT Kanade-Lucas-Tomasi.

LED Light Emitting Diode.

LoG Laplacian of Gaussian.

LSD Least Significant Difference.

MARG Magnetic, Angular Rate and Gravity sensor.

MEMS Micro Electro Mechanical System.

MutEx Mutual Exclusion object.

NCC Normalized Cross-Correlation.

NCFM Network Coupled Feature Maps.

NEF Nikon Electronic Format.

NN Nearest Neighbour.

OpenNI Open Natural Interaction.

ORB Oriented BRIEF.

PF Particle Filter.

PnP Perspective-n-Points.

PPM Portable Pixel Map.

RAG Region Adjacency Graph.

RANSAC RANdom SAmple Consensus.

ix



RFID Radio Frequency IDentification.

RGB Red, Green and Blue.

SAD Sum of Absolute Differences.

SDL Simple DirectMedia Layer.

SFM Structure From Motion.

SFOP Scale invariant Feature OPerator.

SIFT Scale Invariant Feature Transform.

SLAM Simultaneous Localization and Mapping.

SOM Self-Organizing Map.

SSD Sum of Squared Differences.

SURF Speeded-Up Robust Features.

SUSAN Smallest Univalue Segment Assimilating Nucleus.

SVD Singular Value Decomposition.

UAV Unmanned Aerial Vehicle.

USAN Univalue Segment Assimilating Nucleus.

USB Universal Serial Bus.

VPS Video Positioning System.

VR Virtual Reality.

VRML Virtual Reality Modelling Language.

WAV WAVeform audio file.

XOR Exclusive OR.

x



LIST OF FIGURES

1.1 Views from the Hadrian Temple . . . . . . . . . . . . . . . . . . . 2
1.2 Prototype system . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Relationships between chapters . . . . . . . . . . . . . . . . . . . 9

2.1 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 RGB and depth sensors in Kinect . . . . . . . . . . . . . . . . . . 16
2.3 Templates extracted from different features . . . . . . . . . . . . . 22
2.4 SLAM problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Membership functions . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Membership functions for a car’s speed . . . . . . . . . . . . . . . 36
2.7 Diagram of a fuzzy logic controller . . . . . . . . . . . . . . . . . 37
2.8 Tracking methods for AR . . . . . . . . . . . . . . . . . . . . . . 46
2.9 Operation of ARToolkit . . . . . . . . . . . . . . . . . . . . . . . 48
2.10 Tracking methods based on sensor and marker positions . . . . . . 49

3.1 Extraction of 1000 features using ORB . . . . . . . . . . . . . . . 68
3.2 Extraction of 1000 features using SURF . . . . . . . . . . . . . . 68
3.3 Homography H between two views of a scene . . . . . . . . . . . 69
3.4 Initial matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5 Correct matches using RANSAC . . . . . . . . . . . . . . . . . . . 73
3.6 Spatial patterns of feature points . . . . . . . . . . . . . . . . . . 75
3.7 Growing the radius around a point . . . . . . . . . . . . . . . . . 77
3.8 The K-functions of clustered and regular points . . . . . . . . . . 78
3.9 K(r) for the patterns . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.10 Sample images from evaluation dataset . . . . . . . . . . . . . . . 81
3.11 Grid counts and K-functions for EBR . . . . . . . . . . . . . . . . 85
3.12 Grid counts and K-functions for FAST . . . . . . . . . . . . . . . 85

xi



3.13 Grid counts and K-functions for Harris & Stephens . . . . . . . . 86
3.14 Grid counts and K-functions for HarAff . . . . . . . . . . . . . . 86
3.15 Grid counts and K-functions for HarLap . . . . . . . . . . . . . . 87
3.16 Grid counts and K-functions for HesAff . . . . . . . . . . . . . . . 87
3.17 Grid counts and K-functions for HesLap . . . . . . . . . . . . . . 88
3.18 Grid counts and K-functions for IBR . . . . . . . . . . . . . . . . 88
3.19 Grid counts and K-functions for SFOP . . . . . . . . . . . . . . . 89
3.20 Grid counts and K-functions for SIFT . . . . . . . . . . . . . . . 89
3.21 Grid counts and K-functions for SURF . . . . . . . . . . . . . . . 90
3.22 Grid counts and K-functions for SUSAN . . . . . . . . . . . . . . 90
3.23 Using homography for image stitching . . . . . . . . . . . . . . . 96
3.24 Example of a conventional image stitching process . . . . . . . . . 97
3.25 Extraction of regions with different rotations . . . . . . . . . . . . 99
3.26 Stitching results when the coverage is poor . . . . . . . . . . . . . 100
3.27 Stitching results when the coverage is good . . . . . . . . . . . . . 101
3.28 Correlation between coverage and normalized cross-correlation results102

4.1 Internal camera parameters . . . . . . . . . . . . . . . . . . . . . 108
4.2 Calibration grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Calibration images . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4 Visualizations of the distortion parameters . . . . . . . . . . . . . 113
4.5 Prediction-measurement-update cycle of the Kalman filter . . . . 117
4.6 Tracking a person with Kalman filter . . . . . . . . . . . . . . . . 120
4.7 Tracking a walking person with a Particle filter . . . . . . . . . . 122
4.8 Change in particle confidences . . . . . . . . . . . . . . . . . . . . 123
4.9 Mean values for particle confidences . . . . . . . . . . . . . . . . . 124
4.10 Selected features for tracking . . . . . . . . . . . . . . . . . . . . . 133
4.11 3D view of camera path and features . . . . . . . . . . . . . . . . 134
4.12 Incorrect data association . . . . . . . . . . . . . . . . . . . . . . 135
4.13 EKF SLAM and keyframe-based motion estimation . . . . . . . . 138
4.14 Alignment of the camera relative to the direction of motion . . . . 140
4.15 Selecting keyframes based on image correspondences . . . . . . . . 143
4.16 Motion parameters for camera . . . . . . . . . . . . . . . . . . . . 145
4.17 Effect of normalizing feature positions . . . . . . . . . . . . . . . . 147
4.18 Four solutions and triangulation results . . . . . . . . . . . . . . . 151
4.19 Camera trajectories using SURF and ORB for a straight path . . 156
4.20 Camera trajectories using SURF and ORB for a curved path . . . 157
4.21 Re-projection errors for SURF for the straight dataset . . . . . . . 159
4.22 Re-projection errors for ORB for the straight dataset . . . . . . . 160
4.23 Re-projection errors for SURF for the curved dataset . . . . . . . 161
4.24 Re-projection errors for ORB for the curved dataset . . . . . . . . 162

xii



5.1 RGB and depth images from Kinect . . . . . . . . . . . . . . . . . 166
5.2 Projection differences introduced by the calibration parameters . . 169
5.3 Parameters for the explicit definition of a plane . . . . . . . . . . 172
5.4 Back-projection of depth data . . . . . . . . . . . . . . . . . . . . 174
5.5 The algorithm uses a number of threads for performance . . . . . 179
5.6 Extracted planes from the two datasets . . . . . . . . . . . . . . . 179
5.7 Extraction of different planes from the second dataset . . . . . . . 180
5.8 Execution time of the plane extraction algorithm . . . . . . . . . 181
5.9 Timings for image size and number of threads . . . . . . . . . . . 182
5.10 Rectangular features located within an image . . . . . . . . . . . 187
5.11 Tracking selected rectangles . . . . . . . . . . . . . . . . . . . . . 188
5.12 Estimated and true re-projection errors . . . . . . . . . . . . . . . 190
5.13 Rotational and translational errors . . . . . . . . . . . . . . . . . 191
5.14 Camera coordinate estimations . . . . . . . . . . . . . . . . . . . 192
5.15 User tracking with Kinect . . . . . . . . . . . . . . . . . . . . . . 193
5.16 Skeleton joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.17 Torso coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.18 Head coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.19 Right-hand coordinates . . . . . . . . . . . . . . . . . . . . . . . . 197

6.1 Trilateration to find position . . . . . . . . . . . . . . . . . . . . . 206
6.2 Simple diagram of two accelerometer designs . . . . . . . . . . . . 208
6.3 Simple diagram of a gyroscope . . . . . . . . . . . . . . . . . . . . 209
6.4 Errors in GPS data . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.5 Gyroscope drift for the yaw, pitch and roll parameters . . . . . . 213
6.6 GPS position parameters . . . . . . . . . . . . . . . . . . . . . . . 216
6.7 Sample values from the accelerometer . . . . . . . . . . . . . . . . 220
6.8 Sample values from the gyroscope . . . . . . . . . . . . . . . . . . 220
6.9 IMU estimates for the 3D position . . . . . . . . . . . . . . . . . . 221
6.10 Yaw, pitch and roll values . . . . . . . . . . . . . . . . . . . . . . 222
6.11 Diagram of using threads to access data from different sensors . . 226
6.12 Tracking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.13 Selection of the motion model for next prediction stage. . . . . . . 230
6.14 Fuzzy rule-based selection of motion models . . . . . . . . . . . . 232
6.15 Input membership functions for positional and rotational innovations238
6.16 Output membership function . . . . . . . . . . . . . . . . . . . . . 239
6.17 Real and estimated paths for dataset 1 . . . . . . . . . . . . . . . 241
6.18 Real and estimated paths for dataset 2 . . . . . . . . . . . . . . . 242
6.19 Real and estimated paths for dataset 3 . . . . . . . . . . . . . . . 243
6.20 Real and estimated paths for dataset 4 . . . . . . . . . . . . . . . 244
6.21 Real and estimated paths for dataset 5 . . . . . . . . . . . . . . . 245

xiii



6.22 Estimated rotations for CMM and FAMM for dataset 1 . . . . . . 247
6.23 Estimated rotations for CMM and FAMM for dataset 2 . . . . . . 248
6.24 Estimated rotations for CMM and FAMM for dataset 3 . . . . . . 249
6.25 Estimated rotations for CMM and FAMM for dataset 4 . . . . . . 250
6.26 Estimated rotations for CMM and FAMM for dataset 5 . . . . . . 251
6.27 Changes in the state covariances for dataset 1 . . . . . . . . . . . 253
6.28 Changes in the state covariances for dataset 2 . . . . . . . . . . . 254
6.29 Changes in the state covariances for dataset 3 . . . . . . . . . . . 255
6.30 Changes in the state covariances for dataset 4 . . . . . . . . . . . 256
6.31 Changes in the state covariances for dataset 5 . . . . . . . . . . . 257
6.32 Filter errors for dataset 1 for CMM and FAMM . . . . . . . . . . 258
6.33 Filter errors for dataset 2 for CMM and FAMM . . . . . . . . . . 258
6.34 Filter errors for dataset 3 for CMM and FAMM . . . . . . . . . . 259
6.35 Filter errors for dataset 4 for CMM and FAMM . . . . . . . . . . 259
6.36 Filter errors for dataset 5 for CMM and FAMM . . . . . . . . . . 260

7.1 Creating 3D models . . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.2 Methods for creating buildings . . . . . . . . . . . . . . . . . . . . 269
7.3 Effect of optimization on the helmet model . . . . . . . . . . . . . 270
7.4 Sample model and sky light . . . . . . . . . . . . . . . . . . . . . 272
7.5 Textures used in the sample model . . . . . . . . . . . . . . . . . 272
7.6 Selecting individual faces of the model . . . . . . . . . . . . . . . 273
7.7 Unwrapping the faces of the sample model . . . . . . . . . . . . . 274
7.8 Unwrapping the faces of a complex model . . . . . . . . . . . . . 275
7.9 Output texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
7.10 Final model with the baked texture . . . . . . . . . . . . . . . . . 276
7.11 Scene graph structure . . . . . . . . . . . . . . . . . . . . . . . . . 277
7.12 Models created for the in situ augmentation application . . . . . . 280
7.13 Augmenting columns over rectangles . . . . . . . . . . . . . . . . 281
7.14 Augmenting participants . . . . . . . . . . . . . . . . . . . . . . . 282
7.15 State Agora model . . . . . . . . . . . . . . . . . . . . . . . . . . 283
7.16 Division of the State Agora model . . . . . . . . . . . . . . . . . . 285
7.17 User wearing the tracking system . . . . . . . . . . . . . . . . . . 286
7.18 Views from the AR application . . . . . . . . . . . . . . . . . . . 287
7.19 Models used in the AR game . . . . . . . . . . . . . . . . . . . . . 288
7.20 Views from the AR game . . . . . . . . . . . . . . . . . . . . . . . 290

xiv



LIST OF TABLES

3.1 Matching results for ORB and SURF descriptors . . . . . . . . . . 74
3.2 Feature detector evaluation results . . . . . . . . . . . . . . . . . 91
3.3 Results of the 2-way ANOVA test . . . . . . . . . . . . . . . . . . 92
3.4 Differences in mean performance of operators . . . . . . . . . . . 93
3.5 Feature detector evaluation results . . . . . . . . . . . . . . . . . 95

4.1 Calibration results for distortion parameters . . . . . . . . . . . . 112
4.2 Comparison between KF and PF . . . . . . . . . . . . . . . . . . 125

5.1 Calibration parameters for Kinect . . . . . . . . . . . . . . . . . . 170
5.2 Data structure to store point data . . . . . . . . . . . . . . . . . . 184

6.1 GPS and IMU sensors by different vendors . . . . . . . . . . . . . 210
6.2 Specifications for the Phidgets 1040 GPS . . . . . . . . . . . . . . 211
6.3 Specifications for the Phidgets 1056 IMU . . . . . . . . . . . . . . 213
6.4 Calibration parameters found for accelerometer and gyroscope . . 218
6.5 Rule-base for multiple motion models . . . . . . . . . . . . . . . . 233
6.6 GPS and IMU filter errors . . . . . . . . . . . . . . . . . . . . . . 261
6.7 GPS, camera and IMU filter errors . . . . . . . . . . . . . . . . . 261

7.1 Optimization results for parts of the State Agora model . . . . . . 270

xv



CHAPTER 1

INTRODUCTION

Technologies presented every day have brought us into a state of mind which is

more demanding and more difficult to satisfy. We cannot be satisfied with the

things we have, we do and, more recently, we see! Our eyes look for additional

content in the same environment we see every day. This demand provides a

powerful input to research as new challenges to be addressed and unknown areas

to be investigated. As new solutions for existing problems are developed and as

researchers share their future prospects with public, the demand is even more

increased because the results will be combined with the future dreams of people,

forming a cycle1.

Augmented Reality (AR) is a technology which attempts to fulfil the demand

for additional content in everyday scenes by inserting virtual (usually synthetic,

though live videos can also be inserted) objects over the content we would normally

1http://www.creative-science.org/wp-content/uploads/2012/01/CSf-P

The-Creative-Science-Cycle1.pdf

1
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see, in the form of overlays, typically using a Head Mounted Display (HMD).

Having a wide spectrum of application areas, ranging from industrial maintenance

and repair tasks to military training and entertainment, AR has already shown

that it has much potential.

This research concentrates on AR for cultural heritage. The principal reason

for performing AR reconstructions in cultural heritage is that the owners of sites

are usually reticent to permit physical reconstructions in situ so that the archae-

ology remains undisturbed for future generations. Developments in multimedia

technology facilitate the learning experience in cultural heritage with the aid of

improved user interaction methods. Developed models (e.g. Figure 1.1) or vir-

tual tours of reconstructions of archaeological sites provide entertaining means of

learning.

(a) Temple in ruins (b) A reconstruction from [1,
2]

(c) 3D model based on (a)
and (b)

Figure 1.1: Views from the Hadrian Temple in Ephesus, Turkey

However, ex situ reconstructions such as models and movies are difficult to

visualize in the context of the archaeological remains. AR reconstructions can be

produced in situ with minimal physical disturbance, an attractive property, even

though they may take a significant time to develop due to a number of challenges.

An important challenge is producing a realistic output image in which the
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inserted objects are coherent with the real-world scene. Locating and tracking the

user accurately in the environment [3] is key to this process since the user position

and orientation determine the perspective information required for augmenting the

scene. The process of tracking the user position is relatively easy if the user stands

in a fixed, known position in a structured environment, looking at a fixed scene.

Tracking the user becomes much more difficult if he or she is able to move freely

in an outdoor environment where there is no limit for possible movements. This

thesis will show that this is best achieved using a combination of position and

orientation estimates from several sensors, using efficient algorithms to perform

user tracking in real-time.

1.1 Motivation and Approach

The dream feeding and motivating the research presented in this thesis is a “Total

Augmentation Paradigm” which can be illustrated as Figure 1.2 and conceptual-

ized with the two creative science prototype stories given in [4].

The main focus of the thesis is on finding the position of the user since this is a

crucial part for such a system. This will be handled using a tracking system that

comprises a camera, a Global Positioning System (GPS) receiver and an Inertial

Measurement Unit (IMU). Each of the sensors are low cost and public grade, in

other words the accuracy of the sensors are not satisfactory for the application

when they are used alone. For this reason, sensor fusion will be implemented to

achieve more accurate position and orientation estimates.

The camera used in the system has a the task of acquiring images of the scene,

which will be used for two purposes. Firstly, they will be used by the vision-

based algorithm developed in order to provide estimates for the user position
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Real World

User n

User 1

Augmentation for User 1 Augmentation for User n

Agent for User 1

This is the 

Great Temple...

User n’s augmented 

reflection in User 1's 

display

User 1’s augmented 

reflection in User n's 

display

You may 

recognize 

here, User n.

Agent for User n

Augmentation of an 

Ancient Building

Tracking 

and display 

system

Camera

GPS

IMU

Figure 1.2: Prototype system for a “Total Augmentation Paradigm”. Each user
carries a tracking and display device and views the reconstruction of an ancient
building. Users appear augmented in a clothing appropriate for the age when the
building was available to other users of the system. Games inside such a system
may make it even more interesting and entertaining. In addition, each user has
an individual AR agent [4,5] that helps them by providing information about the
history of the building.
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using algorithms from the computer vision domain. The literature provides many

different methods for vision-based pose estimation and the thesis makes use of

some of these methods with a novel approach. Secondly, the images will be used

to produce the final output where augmentations can be overlaid on the original

scene.

The GPS receiver and IMU will aid the camera for positional estimates since

the prototype system is intended to be used outdoors. Positional estimates from

these sensors will be unified with the vision-based ones in order to produce more

accurate results. A second task for the IMU is to provide orientation estimates

using a recent robust method from the literature [6].

The integration of these several sensors was implemented following a multi-

threaded approach to tackle the real-time challenge and using multiple fuzzy-

adaptive motion models for improved accuracy.

Use of Microsoft’s Kinect sensor was also investigated for producing in situ

augmentations for historical columns, and skeleton-tracking features for augment-

ing participants of the system.

1.2 Contributions

The major contributions presented in this thesis are as follows:

1. A metric for evaluating the coverage of image feature points was developed

and the effect of feature coverage on homography estimation was analysed

with a focus on image stitching applications. (Chapter 3) [7, 8]

2. A vision-based tracking method was developed using two-view geometry

with an automated keyframe extraction algorithm for video sequences. (Chap-
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ter 4) [9]

3. A parallel algorithm was developed for finding planar features in a scene

using the Kinect sensor. (Chapter 5) [10]

4. An in situ augmentation algorithm was developed using the depth values

from the Kinect sensor as well as its skeleton tracking features. (Chap-

ter 5) [11]

5. An algorithm for integrating position and orientation estimates from a cam-

era, GPS receiver and an IMU was developed. (Chapter 6)

6. Use of fuzzy-adaptive motion models was investigated in order to reduce the

filter error and handle uncertainty better within a Kalman filtering frame-

work. (Chapter 6)

7. Three cultural heritage applications were developed. The first application

augments scene objects with synthetic columns and users with synthetic

clothing. The second is for a virtual visit to an ancient building and the

third is a simple AR game. (Chapter 7) [9, 11]

1.3 Publications

Parts of the contributions presented in the thesis and other research outputs have

been published or are under review:

1. Bostanci, E., Kanwal, N. and Clark, A. F., “Spatial statistics of image

features for performance comparison,” Image Processing, IEEE Transactions

on, vol. 23, no. 1, pp. 153–162, 2013.



CHAPTER 1. INTRODUCTION 7

2. Bostanci, E., Kanwal, N. and Clark, A. F., “Augmented Reality Applica-

tions for Cultural Heritage Using Kinect”, submitted to ACM Journal on

Computing and Cultural Heritage.

3. Kanwal, N., Bostanci, E., and Clark, A. F, “Matching Corners Using the

Informative Arc,” to appear in IET Computer Vision.

4. Bostanci, E., Kanwal, N., Ehsan, S. and Clark, A. F. , “User Tracking

Methods for Augmented Reality”. International Journal of Computer The-

ory and Engineering, 5, 1, pp.93–98. ISSN 1793-8201, 2013.

5. Bostanci, E., Kanwal, N. and Clark, A. F., “Kinect Derived Augmenta-

tion of the Real World for Cultural Heritage,” Proceedings of UKSIM’13,

Cambridge, UK, 2013.

6. Kanwal, N., Bostanci, E., and Clark, A. F, “Kinect Aided Navigation

System for Visually Impaired People,” Proceedings of the Workshop on

Recognition and Action for Scene Understanding (REACTS 2013), York,

UK, 30-31 August 2013.

7. Bostanci, E., Kanwal, N. and Clark, A. F., “Extracting Planar Features

From Kinect Sensor,” Proceedings of CEEC’12, Colchester, UK, 2012.

8. Bostanci, E., Clark A. F., Kanwal, N., “Vision-based User Tracking for

Outdoor Augmented Reality,” Proceedings of the 17th IEEE Symposium on

Computers and Communication, Cappadocia, Turkey, 2012.

9. Kanwal, N., Bostanci, E., and Clark, A. F., “Describing Corners using

the Angle, Mean Intensity and Entropy of Informative Arcs,” Electronics

Letters, vol. 48, no. 4, pp.209–210, 2012.
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10. Bostanci, E., Kanwal, N. and Clark, A.F, “Feature Coverage for Better

Homography Estimation: An Application to Image Stitching,” Proceedings

of IWSSIP’12, Vienna, 2012.

11. Bostanci E., Clark A. F., “Living the Past in the Future”, 2nd International

Workshop on Creative Science, pp.167–172, Nottingham, UK, 2011.2

12. Kanwal, N., Ehsan, S., Bostanci, E. and Clark, A. F., “Evaluating the

Angular Sensitivity of Corner Detectors,” Proceedings of the IEEE Interna-

tional Conference on Virtual Environments, Human-Computer Interfaces,

and Measurement Systems (VECIMS), Ottawa, Canada, September 2011.

13. Kanwal, N., Ehsan, S., Bostanci, E. and Clark, A. F., “A Statistical Ap-

proach for Comparing the Performances of Corner Detectors,” Proceedings

of the IEEE Pacific Rim Conference on Communications, Computers and

Signal Processing, Victoria, B.C., Canada, August 23-26, 2011.

14. Bostanci, E., Kanwal, N., Ehsan, S. and Clark, A. F., “Tracking Methods

for Augmented Reality,” Proceedings of the 3rd International Conference on

Machine Vision (ICMV), Hong Kong, December 2010.

15. Ehsan, S., Kanwal, N., Bostanci, E., Clark, A. F. and McDonald-Maier, K.

D., “Analysis of Interest Point Distribution in SURF Octaves,” Proceedings

of the 3rd International Conference on Machine Vision (ICMV), Hong Kong,

December 2010.

2Received Intel’s free registration prize.
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1.4 Thesis Outline

The structure followed in the thesis is briefly summarized in Figure 1.3 where the

logical sequence of the chapters can be seen.

Chapter 1

Introduction

Chapter 2 

Literature Review

Chapter 3

Image Features

Chapter 7

Cultural Heritage 

Applications

Chapter 5

Vision With Depth 

Sensor

Chapter 8

Concluding 

Remarks

Chapter 6

Fuzzy Integration of 

Multiple Sensors

Chapter 4

Vision Based User 

Tracking

Figure 1.3: Relationships between chapters

Chapter 2 presents a review of the literature giving a broad analysis of the

previous work on tracking methods for AR.

Chapter 3 presents the first contribution of the thesis as an evaluation of dif-

ferent feature detectors based on their coverage on the input image using a robust

metric that has not been used in the vision domain previously. This important

measure is shown to affect the homography matrix (calculated using these fea-

tures) which is used in many different vision-based applications such as image

stitching or pose estimation.

Chapter 4 presents the second contribution of the thesis, a vision-based user

tracking method based on keyframes. The chapter starts with background infor-

mation on camera calibration and filtering methods then proceeds with an ini-
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tial attempt using a popular monocular Simultaneous Localization and Mapping

(SLAM) method and finally explains the proposed approach.

Chapter 5 presents experimental work and contributions using the Kinect sen-

sor. The first contribution is a parallel algorithm for finding planar features in a

scene using the explicit definition of a plane. The second contribution is for detect-

ing column-like objects in a scene so that they can be augmented with synthetic

columns in a cultural heritage context. The chapter also discusses the skeleton

tracking features of the sensor and its software which can be used to augment

users according to the fashion trends of a particular age.

Chapter 6 combines motion estimates from a GPS and an IMU with the esti-

mate obtained using the method described in chapter 4 as its first contribution.

In addition to this, the use of multiple motion models were investigated using a

fuzzy rule-base in order to capture the user’s motion more accurately and reduce

filter errors.

Chapter 7 presents three applications, one of them using the in-situ augmenta-

tion algorithm presented in chapter 5 and two using the tracking system developed

in chapter 6 as the final contribution of the thesis.

Chapter 8 draws conclusions by giving a brief summary of contributions and

suggests future research topics as further improvements to the algorithms and

systems developed in this thesis.



CHAPTER 2

LITERATURE REVIEW AND

BACKGROUND

This chapter presents a broad survey of the previous work on the topics that are

covered in the thesis. The discussion starts with a review of the computer vision

(section 2.1) methods which are used to acquire information about the scene being

captured using a camera. Topics include cameras and their calibration, methods

for extracting useful information from images and representing this information

and finally approaches for finding camera pose using captured images.

Once an estimate of the camera pose is found, it can then be refined by em-

ploying different filtering methods (section 2.2) for estimation problems in which

data are unreliable and noisy. The discussion continues with use of these filters

in techniques used for robot localization in section 2.3.

A filtering method can make use of various models for updating itself that can

11
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be selected after a decision making process. Fuzzy logic, which allows decision

making to be performed with computers in a similar way to humans, is described

in section 2.4, followed by a discussion of the statistical methods used in the thesis

for an evaluation in section 2.5.

After describing these underlying principles, application examples of AR are

presented, along with how it is used in cultural heritage applications in section 2.6.

This section will be followed by a review of user tracking methods for AR in

section 2.7, including different approaches for indoor and outdoor environments

using different sensors. Then, the shortcomings of current tracking systems and

approaches are presented in section 2.8.

Finally, the chapter is concluded with guidelines for developing a user tracking

system, considering the principles laid in the previous sections, in section 2.9.

2.1 Computer Vision

Vision is an important sense for humans since it allows them to understand the

structure of their environment. This process of inferring the spatial relationships

(i.e. 2-dimensional (2D) positions and perspective order) between the objects in

the surrounding can be described in two stages. First, the reflected light from the

objects in the environment must be sensed through a sensor (the eyes), then it

must be interpreted by a processing mechanism (the brain) to make sense of the

surroundings.

The process becomes harder if the environment is not static i.e. constantly

changing in terms of viewpoints (e.g. self-motion), dynamic content (e.g. moving

objects) and lighting conditions (e.g. day/night, shadows, etc.). Fortunately, our

brains dedicate half of the cerebral cortex, the outer layer of the brain, for this
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processing [12] and can perform the necessary ‘calculations’ to understand these

spatial relationships instinctively.

Trying to emulate the same functionality with computers instead of the human

brain using cameras as sensors is harder, for a number of reasons:

1. Cameras act as a very limited sensor since they do not include any dedicated

structures for sensing shapes and colours separately such as the rod (vision

in low light) and cone (coloured vision) cells in eyes. The only input for a

vision system from a camera is a 2D array of intensity or colour values.

2. The human brain is much more powerful than current computing resources.

One second of neuronal network activity can be simulated using a super-

computer known as “The K” with 82, 944 processors in 40 minutes1. Costs

for such systems are at the order of billions of dollars.

3. Apart from the two hardware challenges mentioned in the items above, the

current literature does not present a complete system of algorithms to carry

out the tasks which our brains can perform intuitively.

Having accepted the practical challenges and current technological limitations

as harsh facts of life, the next step is to have a look at what can be done with

currently attainable resources, such as a modest desktop or a laptop computer.

In fact, a wide range of applications can be found, from navigation systems for

autonomous robots [13–15] to Unmanned Aerial Vehicles (UAVs) [16–18] or cars

using motion analysis in detection and recognition tasks, including face recog-

nition [19, 20], item recognition for manufacturing [21, 22] and tracking [23, 24],

3-dimensional (3D) scene reconstruction [25–27], video stabilization [28, 29] and

adding special effects for movies [30].

1http://www.riken.jp/en/pr/press/2013/20130802 1/
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Most of the applications given above require an understanding of the scene and

finding spatial parameters for the camera, which is an involved process. Common

approaches start with a camera calibration step, which aims to identify the internal

parameters of the camera, and continues by finding and extracting useful bits of

information called features from the images; and then calculating a signature or

‘descriptor’ for these features that is assumed to identify them uniquely. These

descriptors are then used to establish correspondences between images, after which

methods for motion estimation can be used to find spatial parameters such as

position and orientation. The estimate can then be refined using a filtering method

(section 2.2) or a more expensive process mentioned in section 2.1.3.

The following subsections explain some of the sensors, algorithms and methods

that make such applications possible.

2.1.1 Cameras and camera calibration

A digital camera can be viewed as two components, the lens and the imaging

sensor. Reflected light from objects pass through the lens and is then projected

onto the sensor, which can be manufactured as Charge Coupled Device (CCD) or

Complementary Metal Oxide Semiconductor (CMOS) device, both comprising of

an array of sensors sensitive to light. These sensors convert the light into electrical

signals which can be read out digitally for storage or processing.

This relatively complex imaging process is normally represented using an ideal

pinhole camera model [25, 31, 32]. In this simple model, shown in Figure 2.1, the

camera is modelled using a 3D position for the optical centre and a 2D image

plane. The focal length of the camera is the shortest distance between the optical

centre and the image plane. The projection of a 3D point can be obtained by
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drawing a line from the optical centre through the image plane to the 3D point.

The projection is found as the 2D location on the image plane.

X

Y

ZC

Image plane

Optical centre x

y

P

p

f

Figure 2.1: Pinhole camera model. C is the optical centre and f is the shortest
distance from C to the image plane. P is a 3D point with its projection p on the
image plane.

Unlike this theoretical representation, real-world cameras introduce distortion

due to problems in the manufacturing process. For a more realistic representation,

these distortion parameters should also be included in the projection model. The

process for finding these parameters (as well as other internal parameters such

as the focal length) is called camera calibration [33, 34]. There are dedicated

toolboxes for this purpose (e.g. [35]) which can be used to find the distortion

parameters as long as an image sequence acquired with that camera is provided.

A camera is used for vision-based user tracking algorithm and the camera

calibration is performed as described in chapter 4.
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Kinect as an RGB and depth sensor

Microsoft’s Kinect sensor provides depth information as well as conventional Red,

Green and Blue (RGB) colour space images. The device, shown in Figure 2.2,

includes an Infra-Red (IR) projector and sensor in addition to a conventional

camera.

IR 

projector

RGB 

camera

IR 

camera

Figure 2.2: RGB and depth sensors in Kinect

The IR projector sends a grid of IR beams, a method known as “structured

light”. The sensor is calibrated so that it can identify the depth of objects using

the displacement of each beam projected from it in the reflection received by the

sensor. This process of creating a depth image is handled by custom hardware

from a company named PrimeSense2. Sensing the colour and depth of a scene

concurrently allows extracting the 3D structure of the surroundings, thus creating

a representation of the environment.

A third type of sensor available in Kinect is an array of 4 microphones, placed

2http://www.primesense.com/

http://www.primesense.com/
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so that captured sounds can be located within the room. This feature allows the

sensor to distinguish voice commands if it is being used by multiple users.

One of the interesting features of Kinect is that it can also track human skele-

tons, based on the approach presented in [36]. Kinect achieves this by first creat-

ing a depth image and then identifying 31 different parts of the body (the joints).

The second stage infers the body pose using a decision forest, a machine learning

method making use of the results from multiple decision trees, trained with a

large set of training samples (500, 000 frames with ground truth captured using a

motion capture system).

Kinect’s RGB camera can be calibrated using the Kinect Calibration Tool-

box [37] or the calibration parameters can be obtained using another method [38]

that is similar to stereo calibration [39].

Since its launch, Kinect has attracted much attention from both game devel-

opers and vision researchers; indeed, some artists create artwork using it. A range

of different applications making use of Kinect is given in [40].

Kinect is used in this thesis for finding planar features in the environment

for in situ augmentation and to detect human users for augmenting them with

ancient clothing. Both of these are presented in chapters 5 and 7.

2.1.2 Feature detection and description

A feature is an image primitive that contains valuable information about the

content of the image. Every feature appearing in an image shadows a real-world

object. A feature can be in form of a corner [41], an edge [42], a small region

(blob) [43] or a segment [44].

Features are represented using descriptors, which are calculated using the pixel
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information around the feature using a variety of methods: A small patch of

surrounding pixels can comprise the descriptor, or a more complex description

like an oriented gradient histogram [45].

The literature presents many different feature detectors and descriptors. An

evaluation of many feature detectors can be found in [46]. Based on the review

given therein, a good feature detector should be able to detect features that are

stable in terms of geometry under different viewing conditions [47, 48], should

present significant amount of variation in its neighbourhood so that they will be

prominent and provide useful information as well as presenting good localization

accuracy [49]. It is also important for the detector to detect such features in a

reasonable amount of time, a vital requirement for real-time applications. The

feature detectors and descriptors used in this thesis are briefly outlined in the

following paragraphs.

Harris & Stephens [50] is a feature detector that uses eigenvalues of the Harris

matrix as a measure of an image feature’s prominence according to the values in

the local neighbourhood. It is reported to extract features that are invariant to

changes in rotation and illumination [41,47].

Based on the research performed by Tomasi and Kanade [51] in order to specify

a formulation for image displacement (i.e. tracking the features in the image),

the Kanade-Lucas-Tomasi (KLT) operator was derived. Similar to the Harris &

Stephens operator, this detector also works on eigenvalues but the criterion for

selecting corners is that the first eigenvalue should be larger than a threshold.

A further improvement was proposed in [52], suggesting that the smaller of the

two eigenvalues should be larger than a predefined threshold value to make a

good feature. This detector is also known as the Good Features to Track (GFT)

operator.
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The Smallest Univalue Segment Assimilating Nucleus (SUSAN) [49] operator

analyses a pixel point by placing a circular template and terms this the ‘nucleus’.

The number of pixels having a similar brightness (which defines the Univalue

Segment Assimilating Nucleus (USAN)) to the nucleus is counted and subtracted

from a geometric threshold in order to create a response image. A test for false

positives (i.e. a feature that is not actually a corner but reported as a corner

by the detector) is then applied using the centroid and contiguity of the USAN.

Finally, non-maximum suppression is applied.

Edge-based Regions (EBR) [53] defines affine regions by making use of the

neighbouring edges around a corner point. The corner point is associated with

straight or curved edges to define the affine invariant parameters which are ro-

bust against changes in affine geometry (rotations and translations) as well as

photometric variations such as changes in lighting conditions.

Intensity-Extrema-based Regions (IBR) [54] first finds local extrema based on

intensity. The next step is to cast rays from each extremum to its surrounding

and creating an intensity profile for these rays. The point where the intensity

changes significantly is signed with a mark and then an ellipse is fitted to find the

region limited by the marks.

Features from Accelerated Segment Test (FAST) [55] finds interest points by

testing each pixel using a Bresenham circle of radius 3 (16 pixels in total). If N of

these contiguous pixels are similar i.e. have an intensity value close to the centre

within limits, then it is selected as an interest point. Note that values between

9 and 12 can be used as variants for N — though too many interest points are

found when N < 12 [56]. To improve the performance (Features from Accelerated

Segment Test-Enhanced Repeatibility (FAST-ER) [56]), the values on the circle

are compared with the centre point to see if they are darker, similar or brighter.
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Then, a decision tree can be trained to compare the 16 pixels against these classes

and decide whether the centre is an interest point or not. Again, non-maximal

suppression is used to eliminate clustered interest points.

Scale Invariant Feature Transform (SIFT) [57] works by selecting candidate

key-points from locations which can be repeatedly chosen under different orien-

tations and scales. Scale invariance is achieved by using a “scale space” which

appears as a pyramid of images consisting of the octaves created by resizing the

original image to its half size and then applying a Gaussian blur operation. Key-

points are found using a method called Difference of Gaussians (DoG) as an ap-

proximation of Laplacian of Gaussian (LoG). A local descriptor is then generated

by calculating the magnitude and orientation of the gradient. Later, a feature

vector is computed using a histogram of these orientations.

Speeded-Up Robust Features (SURF) [58] were developed as an improvement

to SIFT for extracting features in a shorter time, employing integral images as an

intermediate image representation and using Hessian-Laplacian to approximate

LoG. For the description, Haar wavelet responses inside a circular window are

summed to obtain the orientation vector of the feature. SURF is also claimed to

be more invariant to affine transformations such as translations or rotations than

SIFT by its authors.

It is known that scale invariance on its own is not enough to show robustness

against changes in viewpoint, which result in affine transformations in the im-

age [59]. For this reason, a number of affine-invariant feature detectors have been

proposed. Harris-Affine (HarAff), Hessian-Affine (HesAff) combine scale space

with Harris and Hessian-based detector are detectors developed for additional ro-

bustness against changes in viewpoint. Similarly, LoG is combined with Harris

and Hessian-based detectors again in order to achieve invariance against scale in
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Harris-Laplace (HarLap), Hessian-Laplace (HesLap) [59]

Scale invariant Feature OPerator (SFOP) [60] is a scale-invariant feature detec-

tor that can find invariant features from corners, junctions and features that have

a circular form by combining two existing approaches (junction type points [61]

and circles using a spiral model [62]) into a single framework. The detector can

provide good complementarity [63] to other feature detectors since it can find

features that are not detected by others.

Binary Robust Independent Elementary Features (BRIEF) [64] perform a sim-

ple comparison between intensity values of an image patch and its smoothed ver-

sion. In this way, a binary descriptor that can have different lengths (e.g. 128,

512) is calculated. The binary nature of the descriptor allows matching using the

Hamming distance metric, which can be implemented efficiently using an Exclu-

sive OR (XOR) operation.

Oriented BRIEF (ORB) [65] is a detector/descriptor which uses the FAST

detector for finding features and BRIEF to extract the descriptor. The FAST

detector was made orientation-aware by the addition of an orientation metric

known as intensity centroid. BRIEF was also enhanced by employing a matrix

which is rotated by angle increments for the binary tests, making the descriptor

rotation invariant.

As mentioned earlier in the section, apart from engineered descriptors like

SIFT or SURF, a template can be used to describe a feature. A template or a

patch is a region of pixels extracted from the neighbourhood (e.g. 9× 9, 11× 11,

etc.) of a feature and can be seen as the most basic method of describing a feature

(Figure 2.3). Increased patch size adds to the computation time and patches of

size 15 × 15 are reported to provide sufficiently stable features for long term

processing [66,67].
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Figure 2.3: Templates extracted from different manually selected features

Feature descriptors are used to match images to find correspondences between

them which will later be used to understand the spatial change in feature positions,

and hence the camera motion as described in section 2.1.3. Template matching

involves finding a given patch inside an image. Normalized Cross-Correlation

(NCC) is the method usually employed for template matching [68], though other

methods are also available (e.g. Sum of Absolute Differences (SAD) or Sum of

Squared Differences (SSD)). The response of NCC will be a peak with value of

' 1.0 where the template is found.

Template matching can be a good initial approach for description when the

features are detected with the GFT method or the FAST detector. When a feature

is detected, an image patch is extracted as the signature of that feature. If this

feature is visible in the current frame, it is searched within the image. The result

of the NCC is then checked against a threshold (e.g. 0.7) for a successful match.

The search for a template can be optimized by providing an initial estimate of the

template position [68] which can be the predicted 2D location of a feature from a
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filter, described in chapter 4 [69].

Comparison between two descriptors is conventionally made using the Eu-

clidean distance and the feature producing the best result (i.e. smallest descrip-

tor distance) is selected as the matching feature, the Nearest Neighbour (NN).

When matching is performed using the Euclidean distance, the search process for

matching features can also be optimized using the search region to define possible

match candidates, as mentioned earlier. For increased robustness, an additional

criterion can be added such as a match being only accepted if the distance of the

NN is significantly lower than that of the second NN [57].

More recently, the Fast Library for Approximate Nearest Neighbours (FLANN)

method [70] has become popular for feature matching for SIFT and SURF descrip-

tors. FLANN makes use of either a randomized kd-tree or a hierarchical k-means

tree, depending on the feature dataset, to optimize performance for speed.

Once a set of matching points are found, these correspondences must be

checked for incorrect matches. RANdom SAmple Consensus (RANSAC) [71] is a

method which is used to select the best model for the image transformation based

on a minimum number of matching points between the source and destination im-

ages. The method takes a random set of samples and applies the transformation,

then calculates the number of samples that are compatible with this transforma-

tion ‘inliers’. This number serves as a support for the selected model and after

several iterations the model with the highest support is selected as the consensus.

Incompatible matches (‘outliers’) indicate incorrect matches. A comparison of

RANSAC derivatives is presented by Cho et al. in [72] and more recent deriva-

tives are also available (e.g. BetaSAC [73]), claiming significant speed-up over

RANSAC.

A dozen feature detectors are evaluated according to a novel criterion presented
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in chapter 3 and some of these are used in the vision-based tracking algorithm of

chapter 4 and the in situ augmentation algorithm of chapter 5.

2.1.3 Structure from motion

Structure From Motion (SFM) aims at finding the camera location with respect

to the environment and constructing a map of the environment. Finding the

location of the camera is termed the ‘absolute orientation problem’ and involves

the estimation of the rotation matrix R and the translation matrix t [74]. A

typical SFM approach follows the steps given below [75]:

1. Robustly detecting of salient features, points or lines

2. Determining the correspondences between these features

3. Updating the scene structure estimation

Methods for the first step have been described in section 2.1.2. The second step

has been studied for a long time and a number of approaches can be found [76–78].

A common point in many algorithms is that the camera pose is obtained by

finding correspondences between the 3D coordinates of features and their 2D

projections in images, a problem known as Perspective-n-Points (PnP) [78]. For

three correspondences, four possible solutions can be found, whereas a unique

solution can be found for six or more correspondences [79].

Finally in the third step, the estimate of the camera pose and the scene struc-

ture is updated using the updated information from these 3D–2D correspondences.

An optional refinement stage after the third step can be done either using a filter-

ing approach (section 2.2) or a more expensive method known as bundle adjust-

ment.
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Bundle adjustment [80] is an iterative method for refining the camera pose

estimates and 3D point coordinates using an optimization technique (usually

Levenberg-Marquardt [81]). The aim is to minimize the projection errors for

the 3D points using the camera parameters that model its position and orienta-

tion. This approach is computationally expensive and, even for a small number of

camera parameters, may take hours to converge. Sparse versions of the algorithm,

aimed at improved efficiency, are also available [82].

Lu et al. [83] devised an algorithm which computes the rotation and trans-

lation matrices from object reference frame to camera reference frame using an

orthogonal iteration algorithm based on Singular Value Decomposition (SVD).

The algorithm requires camera intrinsics and can also improve upon the initial

estimate. One problem with this method is that it could result in pose ambigu-

ity for planar targets as indicated by [67, 84]. To address pose jump problems

due to two local minima of the error minimization function for pose estimation,

Schweighofer et al. [84] improved the SVD solution in [83] for planar targets where

they used 4 coplanar (but not collinear) interest points.

Motion estimation of the camera and acquisition of the 3D structure of the

environment was achieved by tracking and matching Harris points between frames

acquired at video rates with a fast local bundle adjustment technique in [85]. This

approach was applied each time a new camera pose was added to the system.

First, a triplet of images was captured to initialize the global frame and geometry;

then some frames were considered as keyframes for the triangulation of 3D points.

Robust pose calculation was performed for each of the captured frames. Keyframes

were added to the system when the number of matching points with the last

keyframe fell below a threshold or if the uncertainty of a calculated position was

high.
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Chandraker et al. [74] applied vision-based localization in a room using a

novel target design having exactly four corners along each straight edge. One

disadvantage of this system was the need for re-initialization each time the camera

lost its track.

The system in [86] started from an initial estimate of the state vector; from

that, the developed method is able to determine the sensor position and the

structure of the environment for mobile AR, combining visual and inertial data

using an off-line learning process for object recognition in which the system was

trained with a set of interest points. Developed approach is used in an extended

tracking operation where these points disappear and new points appear in the

frame. The authors reported about the need for a multiple model system as

in [87].

A recent PnP solution known as Efficient Perspective-n-Points (E-PnP) is pre-

sented in [88,89]. The method selects 4 virtual non-coplanar control points from a

set of 3D reference points to generate and solve a linear system of equations. The

selection of the control points is based on the principal axes around the centroid

of these reference points. This approach can handle planar and non-planar cases

well while scaling linearly with the number of 3D–2D correspondences.

SFM methods generally involve off-line batch processing, do not guarantee

repeated localization [86,90] and provide limited robustness [75], whereas on-line

pose tracking is required for AR applications. Noise can also become a problem,

especially in PnP approaches [78]. Furthermore, pure SFM methods present high

computation costs. Due to these problems sensor fusion was suggested in different

studies [74, 91].

The E-PnP algorithm is used along with the Kinect sensor in chapter 5 in

order to find the camera pose using the 3D points from the depth sensor and their
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2D projections in the RGB image.

2.2 Filtering Methods

In the state estimation problem, where a physical phenomenon is modelled using

dynamic variables, one needs to observe the phenomenon in order to take mea-

surements and hence update the model. This process involves handling erroneous

and incomplete information from the model itself and the tools used for making

observations. “Filtering” methods are used in these sorts of cases. Note that

filtering here is not only used for noise removal but also for incorporating the

measurements in the state estimation with an ultimate aim of obtaining the best

estimate of the state from data that are corrupted with noise.

Filtering methods can be classified into two broad groups, namely Gaussian

techniques (e.g. Kalman filters and its derivatives) and nonparametric filters (e.g.

particle filters). Examples of how filters from both types are used in this thesis

will be given in chapter 4; however detailed information and discussion on both

types can be found in [92]. The following subsections will briefly summarize the

filters used in the thesis.

2.2.1 Kalman filtering

The Kalman Filter (KF) [93] can be considered a practical implementation of

a Bayesian filter which works by updating a prior probability from some test-

ing evidence (measurements) in order to obtain the posterior probability. These

probabilities are actually the state of the system, as mentioned above.

The KF assumes that the system is linear and affected by Gaussian noise, and

models the state using a uni-modal distribution represented with a mean and a



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 28

covariance (moments parameterization) [94]. Under these two conditions, the KF

is considered to be optimal [95] in the least square sense, meaning that the mean

square error of the estimated state parameters are minimized by the filter.

A KF has three main processing stages namely prediction, measurement and

update. In the first stage, the filter generates an estimate using a transition

function. Next, measurements of the physical phenomena are taken. In the last

stage, these measurements are used to update the filter, preparing it for the next

iteration.

Derivatives of the KF also follow the same stages. One such popular derivative

is the Extended Kalman Filter (EKF) which is aimed for handling non-linear cases.

EKF performs this by using a Taylor expansion to linearise the system dynamics

and the observations for the filter.

The KF and its derivatives have been applied to a wide range of applications

from target tracking [96, 97], sensor fusion and robot navigation [98] to machine

learning (e.g. training neural networks [99]).

In the thesis, KF was used to integrate GPS, IMU and camera measurements

to track a walking user in an outdoor environment.

2.2.2 Particle filtering

A Particle Filter (PF) is essentially a Monte Carlo approach [100] which models the

uncertainty of the state estimation problem, starting with a random distribution

over the state space and then converging to a denser solution depending on the

measurements. Unlike the KF, a multi-modal distribution is modelled in the PF

i.e. the posterior belief of the system state is estimated using a finite number of

samples (‘particles’) that populate and ideally cover the entire state space.
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Each particle stores a hypothesis of the state. Practical applications use a high

number of particles in order to cover the each possible value of the state [94]. A

PF replaces the update part of the KF with a process called re-sampling in which

weights of particles, indicators of confidence for a particle, are updated based on

the measurements. After this sampling process, a new set of particles are drawn

from the initial distribution based on the weights for the next iteration.

A large number of particles is required to cover the complete search space,

otherwise the correct state may be missed, a problem known as particle depriva-

tion [101]. The actual number of particles may be selected based on the size of

the search space. A trade-off comes into play as each particle added to the system

and can significantly increase the computational cost.

Due to its inherent ability to model multiple hypotheses, PFs have been used

in many applications, from computer vision to robot navigation. A popular ap-

plication in computer vision is the Condensation algorithm [102] which is used for

visual tracking. In robot navigation, Montemerlo et al. [103] developed an algo-

rithm for a mobile robot to maintain its position based on the readings acquired

by its sensor.

In this thesis, a PF was used to track centres of rectangular objects for the in

situ augmentation algorithm presented in chapter 5.

2.3 Simultaneous Localization and Mapping

SLAM (a.k.a. Concurrent Localization and Mapping (CML)) is the dual of SFM

in the robotics community and is defined as follows: When a robot is put in an

unknown environment, it has to create a map of the environment and must localize

itself based on this map at the same time, as shown in Figure 2.4. A ‘map’ here is a
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spatial representation of the environment, simply a list of objects stored with their

positions [94] as the robots cannot currently interpret the conventional maps that

humans use. However, the primary difference between SFM and SLAM is that

SLAM methods usually involve a recursive estimation for real-time autonomous

operation whereas SFM methods present batch solutions [104].

Figure 2.4: SLAM problem. A filtering mechanism is used to estimate robot’s
position xk at time step k. In order to update this filter, the robot needs to
take measurements zk

i from the surrounding landmarks mi where i ∈ (1, 2, 3, 4).
It is assumed that the sensors of the robot are noisy so the robot will actually
be measuring a distorted image of a landmark rather than the landmark itself.
Following [105].

SLAM has been used in robotics applications [106] both indoors such as robotic

arms, wheeled-robots, walking robots; and outdoors such as autonomous vehicles,

underwater applications for submarines or sponge bed surveys, UAVs or planetary

rovers. Apart from robotics, SLAM has also been used to find contour clusters

belonging to an object by considering the object’s skeleton as an imaginary robot’s

trajectory [107].
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2.3.1 SLAM in general

A general review of how SLAM methods have evolved was presented as a two–

part tutorial in [105,108]. The first part of the tutorial explained the foundations

of the problem and stated the two most common methods namely, EKF and

PF techniques [105]. More advanced concepts such as methods to reduce the

computational complexity or data association issues about SLAM were presented

in the second part of the tutorial [108]. The core problems of SLAM are stated as

the data association problem [109,110] and computational complexity [111,112].

Data association

Data association [94] concerns finding a unique correspondence between the repre-

sentation of a feature and the real-world object from which the feature is extracted.

It is the process of extracting a unique relation between the sensor measurements

and the objects in the map. Therefore, if the measurement produces a spurious

pairing (i.e. a false match), this will badly affect the output of the localization

algorithm.

Neira et al. [109,113] showed that the classical NN algorithm for data associa-

tion in stochastic mapping methods such as the EKF framework was sensitive to

the increase in vehicle or sensor error. A Joint Compatibility Branch and Bound

(JCBB) algorithm was devised to obtain more robust estimation and prevent false

matches.

The importance of data association arises once more for the problem of loop-

closing, which can be described as recognizing a previously visited location. Sta-

bility and robustness of features play an important role in this [114], as the map

will grow infinitely and the accuracy of localization will diminish when loop-closing
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can not be achieved. Loop-closing in [115] was achieved for several hundreds of

meters using the JCBB test for robust feature handling for urban areas. Two

important problems were reported as moving objects, which could provide good

matches but did not act as static landmarks for repeatable localization; and am-

biguities in the images such as repeated textures e.g. grass or tiles. RANSAC was

indicated as an alternative method [115].

Computational complexity

Computational complexity is an important concern in SLAM systems and de-

pends both on the map size and the performance of data association. A larger

environment needs more features to be added to the map, while the increase in

map size will reduce the performance of the system.

Hierarchical mapping (a.k.a. sub-mapping) approaches are used to prevent

this problem by storing the whole map in form of smaller maps and performing

localization using these smaller maps [108]. The advantages of this approach are

identified as:

1. The number of features to deal with will be limited. This will reduce the

computation time required to update a map [116].

2. Uncertainty in a local map will be smaller than in a bigger map. This will

increase the accuracy of the system [110].

Bailey [110] used Network Coupled Feature Maps (NCFM) to solve the prob-

lems of consistency and tractability of large scale SLAM systems. Similarly,

Claracco [117] investigated extending SLAM to large-scale environments using

topological map building. Another important consideration in dealing with the
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sub-maps is also related to data association since it will be used in overlapping

areas to join two maps into a larger map [116].

2.3.2 Visual SLAM

Visual SLAM is a sub-branch of SLAM for the specific case where vision is used.

There are several reasons for this [118, 119]. First of all, cameras are cheap,

small in size and light. Second and more importantly, robust features can be

extracted using computer vision. Third, visual motion estimation techniques allow

3D SLAM and finally, accurate motion estimates can be obtained using these

techniques.

Based on the number of cameras, we can classify visual SLAM systems into

two broad categories: monocular and stereo. Lemaire et al. [119] explained visual

SLAM for both categories; The methods do not differ much. When stereo vision

is used, the baseline between the cameras is used to calculate the distance to the

feature observed by both cameras. When there is a single camera, this baseline

is obtained by moving the camera and observing the same feature from different

locations. Camera calibration can be used for both approaches.

Methods used for visual SLAM, which can also be applied to other sensors such

as laser range-finders or sonar, can be classified into three groups according to the

algorithms used. The first group is the KF approaches, which use a recursive

prediction–measurement–update sequence to estimate a robot’s position [120].

The second group is the PF approaches which have been proposed as alternatives

to the KF algorithms [94]. The difference between these approaches is that the

former stores the estimate as a single state where the latter uses a set of particles

to store several estimates. The third group of approaches either combines KF
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and PF in order to achieve reliable mapping [121] or uses bundle adjustment to

perform frame-to-frame matching [122]. The literature presents a vast amount of

applications from all three groups: for space considerations the discussion will be

limited to applications in AR in section 2.7.1.

This research initially investigated user tracking with purely visual SLAM;

however due to the problems discussed in chapter 4 the approach was adapted to

a combination of SLAM and SFM.

2.4 Fuzzy Logic

The main idea behind fuzzy logic is that the truth value of a proposition is repre-

sented by a function which maps propositions with an infinite set of numbers, or

in numerical terms the interval [0, 1], instead of the conventional binary logic (i.e.

true or false). This idea originates in Zadeh’s initial work on fuzzy sets [123] where

membership of an element to a set is regarded as a partial membership rather

than black and white decisions such as “is/is not a member”. Having multiple

truth values provide a good representation framework for handling uncertainties

and this representation has a very significant value that allows reasoning in an

approximate way [124].

Fuzzy logic can be used to find an approximate model for a problem and solve

it in a way which is not mathematically complicated. This is achieved by using

linguistic variables which are normally used to represent verbal uncertainties. For

instance, when humans talk about the speed of a car they can either use a direct

measure like 120 kilometres per hour in a crisp form or use words like “fast” or

“very fast”. The second form of expression allows creation of verbal rules in the

following form:
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“IF the speed is slow THEN accelerate.”

or

“IF the speed is very fast THEN slow down.”

A set of similar rules, stored in a rule-base, can be used to define the behaviour

of a system. Membership of a crisp input value to these linguistic variable can be

tested using membership functions. The most commonly used membership func-

tions are the triangular, trapezoidal, Gaussian and bell-shaped functions shown

in Figure 2.5.

Considering a system that automatically adjusts the speed of a car following

the example given above, a membership function can be defined as in Figure 2.6

to map different linguistic variables given the crisp speed of a car.

The process of converting a crisp value to a linguistic variable using an input

membership function is called fuzzification. For the car example, once the car’s

speed is fuzzified and expressed as a linguistic variable then a rule can be selected

to decide the action that will be taken based on the car’s speed.

From the example rule, it can be seen that the action is to slow down if the car’s

speed is very fast. Humans can easily interpret such a command but obviously

a computer system needs to know the target speed and the deceleration to be

applied to actually slow down. This can be done using a conversion from the

linguistic variables to crisp values using an operation called defuzzification, the

opposite of fuzzification.

Using the processes mentioned above (i.e. creating a rule-base, fuzzification

and defuzzification), a Fuzzy Logic Controller (FLC) [125] can be created to con-

trol the behaviour of a system. A sample digram is shown in Figure 2.7.
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Figure 2.7: Diagram of a fuzzy logic controller. Following [125].

A problem that can be encountered when designing a system using fuzzy

logic is the exponential growth of the rules if the numbers of input and linguis-

tic variables are large [126]. Rule reduction methods are available to overcome

this [127,128].

With their inherent ability to handle uncertainties and deal with complex

non-linear systems, FLCs have been used in many applications, such as manu-

facturing [129], automated control [130] and many other real life problems [126].

Recently, Hacıomeroğlu et al. used fuzzy logic to control movements of individuals

for simulating human behaviours in pedestrian groups realistically [131].

In this thesis, fuzzy logic was used to define behaviours for using multiple

motion models in order to apply a better model that can fit the user’s motion in

chapter 6.



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 38

2.5 Statistical Analysis

Statistical analysis is a quantitative approach for describing a population which

consists of individuals. Statistical analysis can be performed on samples (i.e. a

representative subset of the population) of a population for two purposes [132]:

1. Extract clear, concise and accurate summary information from samples using

descriptive statistics;

2. Make predictions on the population by first creating a mathematical repre-

sentation of the population and extracting/guessing relations.

The second purpose is a specific type of statistical analysis since it involves

testing a hypothesis that was put forward with a hope that it may provide an

understanding for an observation [133]. This initial hypothesis is called the null

hypothesis shown with H0 and suggests that the means from different populations

are equal. The null hypothesis is supposed to be true by default though it needs

to be tested. There is also an alternative hypothesis (H1) which is competing with

the null hypothesis and suggesting that at least one of the means is different.

An example for hypothesis testing is analysing the performances of a group of

workers working in a production line. The null hypothesis is that the performances

(e.g. number of items produced in a day) of all workers are the same, whereas

the alternative hypothesis is that there are significant differences between their

performances.

Data about the numbers of items produced by each worker could be collected

over the course of two months and used to test the null hypothesis. Results could

reveal that the workers produce different number of items; if so, the null hypothesis

must be rejected in favour of the alternative.
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The literature presents methods to perform hypothesis testing such as t-test

or z-test for comparing means of two populations (when sample size n < 30 or

n ≥ 30 respectively) and ANalysis Of VAriance (ANOVA) for comparing two or

more populations [134].

Before examining ANOVA in more detail, it is worth mentioning that two

types of errors can be faced when performing hypothesis testing, known as Type

I and Type II errors. The former type of error occurs when the null hypothesis is

rejected even though it is true, whereas the latter arises when the null hypothesis

is not rejected when it is actually false.

2.5.1 Variance analysis

As a generalization of t-test for more than two samples, ANOVA performs hy-

pothesis testing by comparing the means of several groups to see whether or not

they are equal. There are two reasons for using ANOVA instead of running t-

tests between pairs of groups: One reason is that pairwise comparisons between

samples is time consuming when there are more than two samples. Second and

more importantly, one can expect to have one of twenty t-tests performed to be

incorrect since this is a consequence of the 5% acceptance level.

ANOVA assumes that independent samples are drawn from populations which

follow a Normal distribution and have equal variances. However, ANOVA is also

known to be robust where the homogeneity of variances assumption is not satis-

fied [135]. A transformation (e.g. log transformation [136]) can be used to satisfy

this assumption since it results in an equal spread.

The result of the transformation can be tested using Hartley’s Fmax test [137],

which involves finding the ratio of the largest variance to the smallest (to yield
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Fmax) and then looking-up a table of critical values [138] for the given number of

treatments and degrees of freedom. If Fmax is found to be smaller than the value

in the table then it is safe to assume the homogeneity of variances assumption.

ANOVA uses a measure known as the F statistic, the ratio of the sum of

squares between the groups and sum of the squares within the groups, after both

have been divided by their number of degrees of freedom. This calculated statistic

is then compared against a threshold value, Fcritical, which is obtained from an

F ratio table for the number of degrees of freedom. If F > Fcritical then the

differences between the groups are statistically significant and H0 can be rejected.

Finding whether a difference exists between different populations is certainly

important; however in most cases it is more informative to perform pairwise com-

parisons between means and ascertain a ranking between these populations (e.g.

which worker is performing better).

2.5.2 Multiple range test

Duncan’s multiple range test [139] is a test that is used to compare means. It

makes sense to use such a test when the null hypothesis is rejected after the

ANOVA test to see the actual differences between the means.

The test works by first sorting the means of the populations into descending

order. Then, the highest mean is compared with the lowest one. If the difference

between the two is greater than the residual mean square, calculated using a table

called “Studentized range” or Q table [138], again for a given number of degrees

of freedom and number of treatments (populations), then it is concluded that the

difference between them two is statistically significant. The test is continued by

selecting the second highest mean and comparing with the lowest mean. Each
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time the number of treatments is reduced by one before consulting the Q table.

An alternative method is Fisher’s Least Significant Difference (LSD) [140]

which is known to be more sensitive to Type-I errors and less discriminating than

the multiple range test [141].

Chapter 3 presents an evaluation of feature detectors using the statistical anal-

ysis methods described in this section according to a novel criterion, feature cov-

erage, which is shown to affect homography estimation.

2.6 Augmented Reality

AR is the process of blending real-world images with artificial objects or informa-

tion generated by the computer. It is defined as an extension of user’s environment

with synthetic content [142]. AR can also be used to enrich human perception

and facilitate the understanding of complex 3D scenarios [143,144].

A broad and comprehensive survey of AR was given by Azuma [143]. Al-

though his review is not recent, the topics he defined in those earlier days of AR

still compose the broad categories of today’s applications. These categories were

defined as medical, manufacturing and repair, annotation and visualization, robot

path planning, entertainment and military training.

The literature presents a wide variety of applications, including 2D or 3D,

augmentations on different platforms. For 2D applications, AR with an overlay of

information about buildings as annotations on images was presented in [145–147].

Several examples can be found for 3D augmentations [148–152].

In the study given in [153], four prototype interfaces were presented for mobile

devices from which users can make queries for the nearest market or pharmacy

including list, map, Virtual Reality (VR) and AR interfaces. Query results were



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 42

presented geographically based on the user’s current location in the list interface

and displayed on a backdrop map in the map interface. The VR interface was

presented as an alternative to 2D map, providing a 3D view of the location.

Finally, the AR interface was used to merge geographical information with the

real-world scene.

AR was used in human way-finding tasks for military search and rescue oper-

ations in [154]. Two types of users were put in a maze of size 4m×5m. The first

type of users were given a map and told to memorize it before entering the maze.

The second type of users were aided with a wearable AR system displaying their

location in the map. The results showed that augmented users spent less time to

localize themselves in the maze.

The AR system in [152] aimed to provide field workers of utility companies

such as electricity or telecommunications with an enhanced perception for outdoor

tasks, including maintenance of underground infrastructure using a hand-held

device. The system used a Geographical Information System (GIS) database for

displaying 3D augmentations of hidden structures such as cables or tubes over

their actual positions. Another mobile GIS system was presented in [155] with

the use-cases given as outdoor localization and guidance, military tactical planning

or urban planning.

Interactive 3D designer applications for indoor [156] and outdoor environ-

ments [151] were presented following the studies of Piekarski [157], who used

Constructive Solid Geometry (CSG) in order to create 3D constructions. Depth

estimation was performed using AR working planes which were generated relative

to other objects in the environment.

Following the ARQuake developed using the system in [148], different mobile

AR games were presented such as Human Pacman, NetAttack, ARSoccer, ARTen-
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nis, The Invisible Train and Capture the Flag in [142]. Furthermore, audio-based

AR is also well known e.g. the mobile narrative-based audio game in [158], though

AR is generally associated with imagery and vision. This idea can also be used

for other AR applications and Human Computer Interaction (HCI) studies con-

sidering visually impaired people [159].

The evaluation of AR systems is an important topic as any developed system is

supposed to serve its purpose well. Different evaluation methods, such as heuristic,

formative or questionnaire-based, are discussed in detail in [160]. A user-centred

evaluation of the CONNECT AR system was presented in [161] where AR was

viewed as a learning method for science and history museums. The evaluation

criteria included visual discomfort, dryness or irritation in eyes, difficulty in fo-

cusing, visual fatigue, dizziness, nausea and general tiredness. Another evaluation

was presented in [149] as a questionnaire-based user assessment to investigate how

users felt during and after using a wearable system.

2.6.1 Cultural heritage applications

Cultural heritage applications [162] such as the reconstruction of ancient Olympia

in Greece [163, 164], Paestum in Italy [165] or the Gosbecks Archaeological site

in Colchester [149] were added to the list of application types given in [143] by

Papagiannakis et al. [166] . AR is an interesting topic, especially for archaeology,

since it is a good approach to displaying ancient buildings to tourists in the same

form as they were in the past. This usage has another valid reason, which is the

opposition of archaeologists to physical reconstruction in situ as they prefer keep-

ing the original structures for future generations [163]. By using an AR system,

no physical reconstruction is required but the computer-generated reconstructions
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can be overlaid on the ruins in the site.

An alternative method for this task is VR, which allows simple tours among

several buildings [167] or with user interaction. Laycock et al. [168] presented an

interesting application that allows users to view high-fidelity reconstructions of

ancient buildings and how they changed (e.g. partial demolitions or extensions to

the buildings) over time.

Ryder et al. [169] worked on populating cultural heritage reconstructions in

order to improve the presentation of the models by adding a lively scene. Meth-

ods for optimization were shown in order to avoid performance problems due to

rendering the large amount of detail introduced when many human models are

added to the scene. This idea is similar to the dream that motivated this research,

mentioned in chapter 1; however these models are synthetically generated rather

than augmented images of the users.

The ArchaeoGuide project [164] used Virtual Reality Modelling Language

(VRML) models, images and sounds for display. Users could customize the dis-

play according to their needs. This system was reported to be uncomfortable to

wear, fragile for outdoor environments and to have contrast problems in sunny

days. In [165], the actual position of the user was used to determine the position

of an avatar in the virtual world for the archaeological site. The system was not a

real AR example but users could see the virtual city as they walked amongst the

ruins.

The Kinect has also been used in the context of cultural heritage. For instance,

Remondino [170] presented a review of using different types of imaging and depth

sensors, including Kinect, to perform 3D scanning of archaeological objects for

the purposes of digital recording, historical documentation and preservation of

cultural heritage. Richards-Rissetto et al. [171] used the Kinect’s body motion
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detection features to perform navigation in a 3D reconstructed model of an ancient

Mayan city using virtual reality.

The thesis presents several AR applications for cultural heritage (displaying

State Agora, a meeting place for government and business discussions in ancient

Greece; augmenting synthetic columns over rectangular objects; and a simple

game) in chapter 7.

2.7 User Tracking Methods for Augmented

Reality

Tracking, the process of locating a user in an environment, is critical to the ac-

curacy of AR applications as more realistic results are obtained in the presence

of accurate AR registration. This process includes determining the position and

orientation of the AR user.

Generally, the most important part is tracking the head, as the user typically

wears a HMD on which the augmented images of the real world are displayed.

Furthermore, a tracking system mounted on the head has better signal reception

if GPS will be used, has a good Field Of View (FOV) of the scene for visual

tracking, and removes the need for lever-arm compensation (i.e. adjusting the

reference frames of the tracking system to align with the user’s eyes).

The improved accuracy of an AR system due to tracking also prevents problems

such as visual capture [143] and does not allow visual sensors to gain priority over

other sensors. For instance, inadequate registration accuracy can cause the user to

reach or walk to the wrong part of the real environment because the augmentation

has been displayed on another part. The eyes of the users get used to the error in
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the virtual environment and after some time of usage they start to accept these

errors as correct, which is not desirable.

2.7.1 Methods

A variety of vision-based tracking methods for various applications are found in

literature [172]. This section provides a review of tracking methods used for AR

applications under four main categories: indoor methods, outdoor methods, fusion

strategies and recent approaches – see Figure 2.8.

SLAM

Emerging
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Sensor 

Fusion
Outdoor

Vision-based

Using Markers

Using Features (Markerless)

Inertia-based

Standard

Accelerometers Gyroscopes

GPS

Differential

Figure 2.8: Tracking methods for AR
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Indoor techniques

Indoor environments provide a structured domain for an AR application; and

movements of the user are limited only to a specified region. In [151], it is stated

that, for an indoor space, the dimensions of the environment are fixed and the

user’s possible movements are more predictable. The structured domain also

provides power for the tracking equipment and presents a controlled environ-

ment [173].

Before proceeding, it is important to understand the term ‘marker’ used in

the context of these methods. Fiducial markers are distinguishable elements put

in the environment so that they can be recognized among other objects in the

same environment. These markers can be categorized as active or passive. Active

markers emit a signal (e.g. magnetic field, Radio Frequency IDentification (RFID)

or light) which can be sensed by a sensor. Passive markers tend to be a pattern

which can be easily isolated from the texture of the environment (e.g. QR codes).

In this case, computer vision methods can be applied to recognize the marker.

Markers are sometimes also referred as ‘beacons’ and ‘landmarks’.

ARToolkit [174] is vision-based library for tracking square-shaped markers for

camera tracking for AR. The library uses a special set of markers that can be

recognized by it. When these markers are within the camera’s FOV, the system

can detect and identify the type of the marker and uses several of them to estimate

camera pose. Once this is known, 3D models in VRML format can be overlaid on

the input image. Figure 2.9 shows this process and how ARToolkit can be used

for displaying ancient buildings on a table.

Indoor tracking is generally achieved by either of two methods: outside-in and

inside-out as shown in Figure 2.10. The names of these methods present clues
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about the location of the sensor, which can be magnetic, ultrasonic, RFID sensors

or a camera, as well as how the tracking is achieved. In the first method, the sensor

is fixed in the environment. The user wears a hat-like item on which markers are

mounted. As the name suggests, the sensor is placed somewhere outside the user

(outside) but is sensing the markers on the user (in). Conversely, for inside-out,

the user carries the sensor and the markers are mounted around the environment

(certainly within the sensor’s range or FOV). As the locations of these markers

are well-known in advance, tracking can be achieved.

(a) Outside-Looking in (b) Inside-Looking out

Figure 2.10: Tracking methods based on sensor and marker positions. Follow-
ing [175].

Although there are many different types of indoor tracking methods using

magnetic or ultrasound sensors, these systems generally use both expensive and

complex hardware [176, 177]. Although GPS is a good option for tracking user

position outdoors, indoor environments such as laboratories or buildings generally

attenuate or block these signals. The absence of GPS signal in indoor environ-

ments implies more reliance on vision-based tracking systems.
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A wide-range tracking system named HiBall was presented in [175]. The aim

of the study was an accurate, robust and flexible system to be used in large

indoor environments. The HiBall device was designed as a hollow ball with a

dodecahedron shape. The upper part of the device was fitted with 6 lenses to

sense the IR light from Light Emitting Diodes (LEDs) mounted on the ceiling in

the laboratory and controlled by an interface board.

A complete tracking system named Video Positioning System (VPS) was de-

scribed in [178]. This system used fiducial markers. A new fiducial pattern design

was introduced which provides unique patterns for accurate position and orien-

tation calculation. The pattern design was based on Region Adjacency Graph

(RAG) with two parts, namely key and identifier ; the key indicated that this

pattern is a marker, while the identifier differentiated between various markers.

VPS was also applied on a parallel architecture in [179], where it was shown that

parallelism improved the performance of some parts in the system for real-time

operation.

In [180], a comparison of the VPS system [178] and ARToolkit was presented.

The results showed that VPS provided more accuracy than the popular ARToolkit

system against moderate changes in viewpoint and distance. However ARToolkit

performed better when distance is increased and the authors suspected that this

was due to the design of the fiducial markers.

Markerless methods can be used to extract features which are already present

in the environment. These features can be points [181], lines [182] or higher-

level geometric structures such as planes [10]. It is important to note that these

natural features should be robust and stable so that the tracking can be performed

accurately.

Chia et al. [181] developed a camera tracking system based on natural features.
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The system used pre-captured reference images of the scene and then RANSAC

was used for robust matching to achieve invariance in motions of the feature

points. The system was able to run at 10Hz using some fiducial markers as well.

Park et al. [183] tracked several 3D objects simultaneously, robustly and ac-

curately in real-time using a combination of object detection and frame-to-frame

tracking. The latter was found to be less computationally demanding than the

former but it was prone to fail and the former was more robust but it was slower.

These techniques were combined to benefit from their advantages. For each target

object, a 3D Computer Aided Design (CAD) model and a small set of reference

images, named as keyframes, were available. Keypoint detection and pose esti-

mation was performed in one thread and keyframe detection was performed in

another thread working in parallel. The system was able to work at 15–20 frames

per second (fps) on a 3.2GHz multi-core Central Processing Unit (CPU), though

the performance deteriorated when the number of objects increased.

Bekel [184] presented a viewpoint-based approach for AR. This method used

Self-Organizing Map (SOM) to train as a classifier which was later used to label

different types of objects in form of overlays.

Adams et al. [185] developed a method for aligning viewfinder frames obtained

from the camera of a mobile phone. They applied their system to three different

cases: night-view, panorama and an input method for the camera instead of

shaking. The authors stated that two algorithms were required for alignment.

The first was the generation of a ‘digest’ by extracting edges in horizontal, vertical

and two diagonal directions and a set of point features. The second part was the

alignment of edges. This gave the translation between two frames. Then, by

using the point feature correspondences, the confidence of the initial translation

was obtained. The alignment algorithm developed in the study was fast and
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robust against noise; however it was fragile against rotations, where rotations

greater than 1.5◦ were reported to create problems.

A different approach for pose tracking with the built-in camera of a mobile

phone was followed by Wagner et al. in [186]. They used SIFT for robust feature

detection and Ferns, which is a fast classification method requiring a great amount

of memory. To alleviate the computational expense of the SIFT method it was

altered by removing the calculations required for scale invariance. Instead, a

database of the features at different scales was used for the same purpose. FAST

was used for corner detection for its high repeatability.

VisiTrack system was developed in [187] for tracking on mobile devices using

point and edge extraction together with colour segmentation. Although the sys-

tem was claimed to provide markerless localization, a marker can be seen in the

test sequences of the system running at 25fps.

For the indoor AR system in [147], visual tracking was used. The system

recognized image views of the environment acquired beforehand. Processing was

carried out by remote computers via a wireless network.

Outdoor techniques

Indoor environments are more predictable whereas outdoor ones are limitless in

terms of location and orientation. As opposed to indoors, there is less chance for

preparing the environment to track the user while working outdoors. Moreover,

predefined artificial landmarks cannot be used and natural features need to be

extracted. Also, varying light poses a challenge for camera tracking which is not

an issue indoors.

As mentioned earlier, GPS is considered a good tracking option when working

outdoors. A comparison of GPS receivers, including different brands such as
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Trimble, Garmin and DeLorme, is given in [151].

A differential GPS and a compass was used for position and orientation esti-

mation in [164]. Latitudes and longitudes of several viewpoints were stored in a

database along with the set of images taken at different times of the year with

varying light conditions.

Reference images were used for video tracking and matching was performed

to find these reference images for the outdoor AR system in [163]. A video image

was compared with the reference images and a matching score was obtained. For

the best matching score, the 2D transformation was calculated and the current

camera position and orientation were deduced. This transformation was used to

register the model on the video frame. The matching technique was based on

Fourier transformation to be robust against changes in lighting conditions, hence

it was limited to only 2D transformations such as rotation (requires additional

processing) and translation. This technique had a fixed number of computations

and so was suitable for real-time operation without markers, working at 10Hz.

Inertial sensing is a widely used method since its operation is similar to the

otolithic stones in human ear [75]. Accelerometers are used for detecting trans-

lational motion and gyroscopes for rotational motion. This method is generally

used together with other tracking methods as will be explained in more detail

below.

For tracking the user’s location in the ancient city of Paestum in Italy [165],

a wireless system was planned, using antennas instead of GPS. However, this was

not implemented due to the opposition to changes in the archaeological site by

the archaeologists [163].

Tracking for a walking or running user was performed using a custom tracking

system in [188]. The system used an inertial sensor, electromagnetic sensor, push-



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 54

buttons in the heels of the user’s footwear and trackers at the knees, so that the

motion of the legs could be obtained. The transmitter was mounted above the

user’s waist so that the relative motion of the legs could be extracted when the

user’s foot does not ground.

Fusion strategies

When the above-mentioned methods are used with a single sensor, accuracy of

the tracking may be low. However, accurate systems can be obtained by using

different sensors in combination, an approach known as sensor fusion.

Fusion methods are classified as loosely and tightly-coupled systems [75]. In

loosely-coupled systems, the sensors act separately and perform calculations re-

gardless of each other. However, in tightly-coupled systems, estimates from dif-

ferent sensors are directly combined to generate a single and improved position

and orientation estimate.

Visual-inertial tracking is a popular technique, due to the complementary char-

acteristics of the sensors, and is used in many different applications. Vision al-

lows estimation of the camera position directly from the images observed [189].

However, it is not robust against 3D transformations, and the computation is

expensive. For inertial trackers, noise and calibration errors can result in an accu-

mulation of position and orientation errors. It is known that inertial sensors have

long term stability problems [190]. Vision is good for small acceleration and ve-

locity. When these sensors are used together, faster computation can be achieved

with inertial sensors and the drift errors of the inertial sensor can be corrected

using vision. Applications generally use low frequency vision data and high fre-

quency inertial data [86] since visual processing is more expensive and trackers

today can generate estimates at rates up to 550Hz using custom hardware [191].
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A hybrid tracking system was developed by [144] for mobile outdoor AR.

The system combined vision-based methods and inertial trackers. The developed

inertial tracker hardware included 3 accelerometers, 3 gyroscopes and a Digital

Signal Processor (DSP). These devices were used to track accelerations in x, y

and z coordinates. The vision system used point features and calculated the 6

Degree of Freedom (DoF) camera pose using PnP.

Another visual-inertial tracker system was developed by Foxlin et al. [192]. One

or more cameras could be added to the system. The authors developed a fusion

filter to combine visual and inertial measurements. Circular fiducial markers were

used for tracking.

A self-contained tracking system for outdoor using inertial and visual sensors

was developed in [173]. The system used a fiducial design based on colours for

and indoor AR application.

You et al. [189] developed a hybrid system for accurate registration in AR. A

prediction-correction method was used in their system. The data obtained from

the inertial sensor was used to estimate 2D feature motion (2D prediction) and

then visual feature tracking was employed to correct the estimate (2D correction).

Finally, a 3D correction was performed by the gyroscopes from the 2D motion

residual.

User tracking in [151] was performed with GPS and head trackers and a camera

was only used for capturing the view. System components included a Trimble

AgGPS 332 Receiver, a TCM5 3-axis orientation tracker, a Wristpc wearable

keyboard2, a Cirque smart cat touch pad3, i-glasses SVGA HMD, and a laptop.

Inspired by a desktop optical mouse and based on the “Anywhere Augmenta-

tion” paradigm introduced by the authors for outdoor AR, a tracking system with

a camera aiming directly to the ground and an orientation tracker was developed
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in [193]. The system additionally used GPS to prevent long term drift of the

system.

Haala et al. [194] used a low-cost GPS and a digital compass for positioning in

an urban environment. The authors applied shape matching with the 3D model

of a building and the actual building. When the system found a match, the 3D

model was overlaid in the video.

Piekarski [157] developed an outdoor AR system using a Trimble Ag132 GPS

unit and an orientation tracker, and achieving an accuracy of less than 50cm. In

the software, the user was able to define the corners of 3D model to be drawn

with a pinch-glove. The marker on the glove was tracked by the system for this

purpose.

A different outdoor application which aimed to display an archaeological site

to users was given in [149]. The system used GPS together with inertial sensors

provided within the HMD.

Sherstyuk [195] developed a novel method for fast semi-automatic 3D geometry

acquisition using motion tracking equipment which was intended for quick surface

prototyping where quality is not of high priority. A life size medical mannequin

(articulated doll), having additional touch sensitivity to arbitrary locations, was

used. Then a surface scanning method was used to track the motion of the user

and generate the 3D reconstruction of the mannequin for medical visualization.

Emerging approaches

Finding the position and orientation of an agent is an issue for tracking in both AR

and robotics. There has been a vast amount of research in the robotics field about

this topic. Since SLAM algorithms can be applied for a robot, they can also be

applied to a camera mounted on the user in an AR context. Conventional tracking
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techniques, as explained before, have their own advantages and disadvantages

in different situations. Application of SLAM algorithms to tracking brings new

initiatives to current state-of-the-art systems.

An interactive and interesting application was presented in [196] where Chekhlov

et al. applied EKF SLAM, given in [69], to an AR game in which a ninja tries

to jump from one plane to another until he reaches the target plane. Higher level

structures such as planes were created from point feature sets using RANSAC and

the OGRE game engine [197] was used to implement the game.

Bleser [198] investigated the robustness and accuracy of real-time markerless

augmented reality in both known and unknown environments for AR. Bleser used

sensor fusion of IMU and a camera in a PF framework. A CAD model of the

environment or an object was matched with the actual one. The tests showed

that operation in a small environment of 2.1m×1.5m×2.5m, while a conceptual

solution for large environments was presented.

One of the most impressive results for AR using SLAM was presented in Klein

et al. [199]. Their system used markerless tracking in a parallel system. Two

threads were executed, for tracking and mapping of the environment. They also

presented interesting AR applications such as a desktop game and a magnifying

glass for burning objects in the scene using heat from a virtual sun.

Kozlov et al. [111] proposed using AR as an approach to visualize the internal

state of a robot in order to test and debug SLAM algorithms. Their approach

presented a different point of view, as the methods mentioned above used SLAM

for AR. The authors proposed using visualization for robot pose, state map and

data association where cross correlations could be used to show the decrease of

uncertainty in the map.
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2.8 Problems with Current Approaches

Current tracking systems still have many problems. Two types of errors were

defined in [143], namely static and dynamic errors. Before giving details about

problems when using different types of sensors, these two important terms will be

explained.

The errors in tracking systems are considered as static errors due to the inad-

equate accuracy provided by current systems. Dynamic errors are due to delays.

The end-to-end system delay is the time elapsed between the time when the track-

ing system measures the position and orientation of the user to the time when the

images appear on the display.

All of the studies given in section 2.7 area able to present good results in

terms of both tracking accuracy and application domains. However, they work

well only in a small environment such as a room corner [196], a desktop [199] or a

whole room [198] — all indoor environments. In [200], localization was performed

according to known 3D junctions and AR tests were carried out with a rectangular

pattern visible in the view during processing. The system used tokens as markers

in [201], although markerless tracking was claimed.

Conversely, this research will be directed towards the use of AR in outdoor

environments. There are important differences between indoor and outdoor en-

vironments for vision-based tracking methods. First of all, indoor environments

are generally limited in terms of location, and hence are more predictable. Fewer

features are required for tracking. Second, the lighting (which is a very important

factor for vision-based processing) is constant for an indoor environment, where

this may vary largely due to the clouds, shades, etc. Lower contrast also poses

a challenge for finding and tracking robust features. Another important factor
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to consider is the distance for acquiring the depth information. When a feature

lies closer to the camera, the camera can extract depth information after a small

movement via computational stereo. However, when the feature is far from the

camera, a large camera motion is required to estimate its depth. Finally, outdoor

applications do not allow placing markers; natural features must be extracted for

tracking.

Vision methods allow both tracking and managing residual errors. They are

low cost. The problem with these methods is the lack of robustness [146]. For some

applications (e.g. [193]), there may be a great probability of incorrect matches

since the texture of the ground is mostly similar in different areas. It was stated

in [146] that the structure of AR models is more difficult than VR since the

former uses geometry not only for visualization but also for occlusion handling

and vision-based tracking of scene features.

Also for visual tracking, the features to be used as landmarks should be in-

variant to changes in lighting and viewpoint. Since this is not always possible,

vision-based tracking for outdoor environments is reported to be fragile [144].

Using a camera as the only sensor was found to be accurate but expensive in

computation [91].

SFM methods use off-line batch processing methods [84,85] on video sequences.

The 3D structure of the environment can then be extracted using non-linear min-

imization techniques (e.g. bundle adjustment). These off-line methods cannot

provide the real-time performance [181] required for AR. Therefore a sequential

method which performs the localization [66] will be more useful.

Standard GPS has an error of the order of 10m. However, it improves when

a differential GPS or real-time kinematic correction is used. Line of sight can

be a problem for the satellites in urban environments [75] or under dense tree
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canopy [202]. Other problems with GPS were explained in detail in [110]. The

system developed in [152] reported tracking problems occurring when GPS was

used as the only sensor, and the authors suggested using sensor fusion or GPS

dead-reckoning.

Double integration of data from inertial trackers cause drift errors to propagate

rapidly [193]. Active tracking systems require calibrated sensors and signal sources

in a prepared environment and tracking equipment can be affected by signal noise,

degradation with distance and interference sources [145]. Magnetic trackers can

be interfered by the ferro-magnetic objects in the environment [203]. A system

with gyroscopes and accelerometers provide good bandwidth; however, it is prone

to integrated errors and long term stability is not guaranteed [204].

There are several issues that must be considered for an accurate system. As

with almost all other vision-based systems, incorrect feature correspondences pose

a problem since low precision and recall rates were reported for feature matching

with images [104]. For a vision-based approach, RANSAC is useful for the data

association problem but it was reported to result in incorrect estimates occasion-

ally [205]. SIFT or SURF descriptors are considered as an important barrier to

achieve full frame-rate operation [206]. However, using these robust descriptors

can help solve the problems described above.

Similar problems come into consideration in the SLAM systems used in robotics.

First of all, data association, finding a unique correspondence between the feature

model and the observation due to incorrect correspondences mentioned above is a

problem. The second problem is linearisation due to the characteristics of current

SLAM methods (e.g. EKF). Linearisation problems affect both the filter stability

and convergence resulting in less accurate localization [207].

SLAM applications on robots usually have odometry sensors, providing speed
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information which is used as a control parameter in a filtering approach. This

information is not available for a moving person and the movements of the person

cannot be controlled like a robot. The system in [208] generates motion commands

to maximize the accuracy of a SLAM application. A better method is to use

an inertial sensor to decide on the motion model in a multiple model approach

like [87]. Also, modest speeds are given for a robot as 1m/s [209]. This speed

is almost the same for a tourist walking in an archaeological site to examine the

ruins.

A vision-based approach is promising for motion estimation. Some of the

previous systems [145, 163, 164] have used methods that employ computer vision

methods for tracking; however, these systems are aimed for users standing at a

fixed position. For a user in motion, most methods use GPS and inertial trackers

for this purpose [148,149,151,152].

The idea of using different sensors together is quite useful because different

sensors can counteract each other’s weaknesses and provide more accuracy. In-

ertial sensors can be used for stability and robustness in cases of rapid motion

or occlusion [91]. Even better results can be obtained with a similar approach

as [210] by fusing GPS measurements with measurements obtained from vision

system. Tracking accuracy and convergence speed is claimed to improve by using

more sensors [211].

2.9 Remarks

This chapter presented a review of the different methods and techniques that are

employed in the thesis. Starting with computer vision, through filtering methods

and fuzzy logic to tracking methods used for AR, previous work was described
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with emphasis on the areas that are actually used in the remaining chapters.

AR has the potential for many interesting applications, including entertain-

ment such as the games in [142,148] or cultural heritage applications as in [149,163]

when working outdoors is considered. Using vision-based approaches for locating

the user in an outdoor AR environment is a new research area; it will be especially

useful for this purpose if it can be achieved with the required accuracy.

According to the review presented in this chapter, the literature presents a

vast amount of studies and methods targeting the problem of finding a user’s

position in an AR environment. Based on the problems identified in section 2.8,

the following findings have been suggested [212]:

i. A fusion of different sensors within a filtering framework is a promising ap-

proach to follow.

ii. Vision-based tracking is quite useful because we already need images of the

environment for augmentation. As we have this information source at hand,

it is wise to use it for both tracking and overlaying.

iii. The introduction of robust detectors such as SIFT or SURF will improve the

visual tracking process, yet they are considered as an important barrier to

achieving full frame-rate operation in real-time.

iv. Graphics hardware or parallel implementations can be useful for performance

considerations.

These suggestions will be followed in the rest of the thesis in the development of

a system that will track the position of the user in an AR application similar to

the one developed in [149] in a cultural heritage [162,166] context.
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IMAGE FEATURES

Many vision applications, including visual SLAM [69, 213], 3D dense reconstruc-

tion [214] and the vision-based user tracking method described in chapter 4, rely

heavily on accurate feature detection and matching. Feature detection must be

robust, stable, and invariant to changes in scale and viewpoint as mentioned in

section 2.1.2. Feature descriptors need to be able to characterize features uniquely.

If real-time operation is desired, both detection and matching must be quick to

execute [46].

There are now many feature detectors and descriptors that exhibit some of

the characteristics outlined above, and this obviously leads to questions regarding

which one is best. Regrettably, different detectors detect different features in the

same image, so one cannot evaluate performance based on knowledge of where

features should be found; instead, researchers have either had to rely on evaluat-

ing detectors and descriptors in the context of a particular application (termed

63
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‘scenario evaluation’ in [215]) or employ measures that attempt to encapsulate

particular properties of detectors and descriptors [216] (‘technology evaluation’

in [215]). Two measures have become well-established, namely repeatability [216],

the ability of the operator to produce the same descriptor for the same feature

in different images (see also [217]), and coverage, the distribution of detected fea-

tures around the image. It is the topic of measuring coverage in images that is the

focus of this chapter, an extension of work reported in [7,8]. As will become clear,

good coverage is essential if the homography between images is to be determined

accurately.

Considering a pair of images acquired from the same scene from different view-

points, there will be an overlapping region in these images. This overlapping region

provides feature matches. When these matches are concentrated in some parts

of this region, it is generally found that the resulting homography is inaccurate,

leading to e.g., poor mosaicking of the images or poor performance when tracking.

Conversely, when matches are widely distributed around the overlapping part of a

pair of images, calculated homographies are more accurate. Hence, it is valuable

to be able to measure feature coverage in images to assess whether any resulting

homography calculation is likely to be sufficiently accurate.

There are already several approaches that measure and use coverage. Although

some researchers have intuitively believed that well-distributed feature matches

should yield to more accurate homography estimations [25, 31, 218], the first re-

ported work that explicitly addresses it appears to be [218], in which similar

numbers of Harris points were selected from each tile of a notional grid placed

over the image, the aim being to obtain a uniform distribution of features. During

execution, if no features were found in a region of the image, one or more tiles were

selected randomly for feature extraction. A similar, though more computationally
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expensive, method was proposed in [25], where the image is again divided into

tiles and the Harris corners with the strongest responses were chosen in each tile.

An explicit definition of coverage was presented in [219], though the evaluation

used in their study was only qualitative, based on a frame detection method in

order to analyse visually the portion of the image covered by detected features.

Dickschheid et al. [220] investigated the localization accuracy of a camera

system with different feature detectors, using the convex hull as an indicator of the

spatial coverage of feature points. Tuytelaars et al. [221] discussed dense sampling

in order to obtain better coverage of the image using simple spatial relationships

between feature points for application domains similar to those mentioned earlier.

Ehsan et al. [222] used the harmonic mean of feature distances as a measure of

image coverage as it penalizes feature detectors that produce clustered features.

There are also studies [63] that investigate pairs of feature detectors in order to

obtain better coverage, using the complementarity of feature detectors [223].

The studies mentioned above involve the analysis of the spatial density of

feature points in images. [219] is based on visual inspection, useless for a coverage

measure. The method in [220] uses the ratio of the area of the convex hull of the

feature points and the entire image, essentially the density of features. However,

the approach is an average, unable to ascertain whether there are aggregations

of feature points or regions with no feature points within the convex hull of the

features [224, 225]. Similarly, using pairs or groups of features [63] may not be

appropriate because no account is taken of the variation of feature density.

The approach used in this study is based on a robust technique used in other

domains for many years [225–229] but not previously applied in computer vision.

The spatial analysis approach employed here is able to ascertain at what distances

the most clustering occurs, a finding that is not available in any of the studies
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above. This is important because if these distances are known then it may be

possible to refine the detector result simply by removing aggregated points. Fur-

thermore, the speed of the calculation is rapid enough for on-line computation.

This work employs a statistical measure to estimate coverage and uses a null

hypothesis framework to assess whether different feature detectors achieve signif-

icantly different coverages, an inherently conservative approach. The aim here is

not to present this as the ‘right’ way to measure coverage; rather, it has been cho-

sen as a complementary approach to those that have already been utilised. This

is because, in the wider context of analysing the performance of vision algorithms,

one should expect a robust algorithm, on average, to yield better performance ir-

respective of the datasets and performance measurement criterion used; hence, it

is contended that the research community should be using a range of measures on

a variety of data and determine which algorithms consistently appear good. This

is analogous to measuring quantities by several different methods in the physical

sciences.

The rest of this chapter starts with a brief discussion of feature detectors and

descriptors providing sample feature extraction results using two images from a

sequence in section 3.1. The extracted features are matched in section 3.2 in

order to find feature correspondences and then obtain the correct matches using

a method known as RANSAC for homography estimation.

Having extracted the features, the discussion examines spatial analysis meth-

ods, and Ripley’s K-function in particular, in section 3.3, followed by a discussion

of our evaluation framework for analysing the coverage of features using ANOVA

and multiple range test in section 3.4. Results of the evaluation on a large set of

images for several feature detectors is presented in section 3.5.

The analysis is applied to a real-world application, image stitching, in which
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images of the same scene are combined into a larger image. The effect of feature

coverage is assessed using the quality of the output images combined using the

homography estimated from the extracted features from both images and results

are presented in section 3.6. The chapter is concluded in section 3.7 with a

discussion on feature detector selection for the following chapter.

3.1 Feature Detectors and Descriptors

Computer vision methods are usually based on finding prominent parts of an

image known as features. These prominent parts are locations where pixel values

are significantly different from the others in the neighbourhood. Methods known

as detectors offer a range of means for finding these locations. A response is

calculated using the method across the image and pixel positions having maximal

response are selected as features.

In order to find similarities in different images, or in matching these images,

a signature of the detected features must be calculated. These signatures are

called descriptors. The descriptor of a feature in one image can be matched with

features found in other images so that correspondences can be obtained across

images. Based on the method descriptors are calculated, scale and rotation in-

variance can be achieved to some extent. Invariance to scale can be obtained

by choosing features with maximal response at different scale levels whereas ro-

tational invariance can be achieved using rotationally-invariant features such as

corners, or using the number of gradient orientations in the feature neighbourhood

(see section 2.1.2).

Figures 3.1 and 3.2 show the detected features using ORB and SURF detec-

tor/descriptors from two frames of a video sequence. Although the number of
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selected features are the same for both detectors (the best 1000 features are cho-

sen in each case), it is clear that the method of calculating the response function

for prominent locations in the image are different. There are also similarities in

the features such as the ones found on the columns.

(a) Image 1 (b) Image 10

Figure 3.1: Extraction of 1000 features from first and tenth frames of a sequence
using ORB

(a) Image 1 (b) Image 10

Figure 3.2: Extraction of 1000 features from first and tenth frames of a sequence
using SURF
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3.2 Homography Estimation

A homography matrix models the perspective transformation between two images

and represents a linear relationship between the corresponding image features, as

depicted in Figure 3.3.

Figure 3.3: Homography H between two views of a scene

Considering a pixel position x = (u, v, 1)T in a source image and its correspon-

dence x′ = (u′, v′, 1)T in a destination image, both represented in homogeneous

coordinates, the homography matrix will transform the first pixel position onto

the second as shown in (3.1)

x′ = Hx (3.1)
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where H is a 3× 3 homography matrix

H =


H0,0 H0,1 H0,2

H1,0 H1,1 H1,2

H2,0 H2,1 H2,2

 (3.2)

Note that an affine transformation is obtained when H2,0 and H2,1 are 0 and H2,2

is 1.

The number of elements in the matrix in (3.2) is 9 but the actual number of

unknown parameters is 8 sinceH can be determined up to a factor of scale [31]. For

this reason, only four feature correspondences are enough to estimate H — though

in practice many more correspondences are used for improved robustness. Each 2D

feature consists of x and y components. Thus for N ≥ 4 feature correspondences,

the homography matrix can be computed using the Direct Linear Transformation

(DLT) algorithm [230] as an initial solution.

This initial solution obtained using 4 correspondences is limited, in that it

may not apply to all feature correspondences. For this reason, it is normal to

find many correspondences, and then use RANSAC [71] to identify the transfor-

mation that applies to them. This process can be briefly described as choosing 4

correspondences randomly from the list of all feature correspondences. Then, an

algorithm (e.g. DLT) is used to obtain an estimate of the transformation. This

transformation is applied to all of the feature correspondences in order to find the

inliers (features that are compatible with the transformation). This iteration is

repeated until some exit criterion is satisfied (e.g. maximum number of iterations)

and the transformation with the highest number of occurrences is selected as the

result.
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This method of finding an estimate of the transformation is an important step

in order to identify and discard the incorrect matches (known as outliers) from

the set of feature correspondences: Outliers also have a detrimental effect on the

accuracy of the position estimation algorithm described in chapter 4. After finding

the homography matrix H using RANSAC, all the matching points are checked

against this transformation modelled by H by applying H to the source point x.

The difference d is defined as the norm of the difference between the destination

point x′ and the result of transformation Hx as in (3.3)

d = ‖x′ −Hx‖ (3.3)

The difference d is a measure of how far the actual and the projected points are

apart from each other. In practice, values between 1.5 and 3 pixels are used

since
√

5.99 = 2.45 is given as a guideline in [31, 231] considering the probability

distribution of the measurement error.

Lowe [57] suggests using the Hough transform [232] as an alternative approach

to RANSAC for robust fitting since the accuracy of RANSAC degrades when the

outlier rate is above 50%. On the other hand, RANSAC is faster and more space

efficient than the Hough transform since the former uses a simpler model and does

not require an accumulation table.

Figures 3.4 and 3.5 present a visualization of the matching process using the

FLANN method [70] and removal of incorrect matches using RANSAC. The initial

result of matching (Figure 3.4) show lines between pairs indicating corresponding

features. It can be seen that most of the lines follow the same transformation and

hence are parallel; however there are also lines connecting spurious correspon-

dences and clearly deviating from the main trend.
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(a) Initial matches using ORB

(b) Initial matches using SURF

Figure 3.4: Initial matches using ORB and SURF.
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Once the correct transformation is found using RANSAC, the outliers are iden-

tified and removed from the list of matching points, leaving only lines that follow

the model found as the consensus, as shown in Figure 3.5. The parallelism between

the lines indicates that the remaining pairs follow the same transformation.

(a) Correct matches using ORB

(b) Correct matches using SURF

Figure 3.5: Correct matches using RANSAC to obtain the correct matches shown
by parallel lines

Table 3.1 presents the number of inliers and outliers when matching was per-

formed using ORB, which uses FAST features as described in section 2.1.2, and

SURF. In the example of Figures 3.4 and 3.5, ORB has an inlier rate of 79.7%
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while this rate for SURF is 42.3%. These results indicate that ORB performed

better than SURF in matching features in these two images.

Table 3.1: Matching results for ORB and SURF descriptors

Matches ORB SURF

Inliers 594 423
Outliers 151 577

Total matches 745 1000

Homography estimation using RANSAC plays an important role in computer

vision applications as a robust method of eliminating outliers. A direct appli-

cation of homography estimation is image stitching applications where multiple

images can be combined together to produce a larger image as detailed in sec-

tion 3.6. Before giving further details about this application, the following section

will present analysis methods used to analyse the spatial distribution of detected

features.

3.3 Spatial Analysis

When one examines the locations of detected features in an image, it is typically

found that there are clusters of points around particular image features; this is

particularly so with multi-scale detectors such as SIFT [57] because the same

feature may be found at several scales. When such inhomogeneities are present,

first-order measures such as feature density are unable to describe the variation

observed, yielding a poor description of the true image coverage.

Point distributions fall into three broad categories, ranging from dispersed

(called “regular” in the literature), through random to aggregated (Figure 3.6). In

a regular pattern, feature points are distributed uniformly over the image. Ran-
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(a) Regular pattern
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(c) Aggregated pattern

Figure 3.6: Spatial patterns of feature points (following [224]). Superimposed over
the patterns are ‘tiles,’ each of which is annotated with the number of features in
that tile. The number of features in a regular pattern (a) is consistent from tile
to tile; random patterns (b) have some patterns with somewhat higher or lower
counts, while aggregated patterns (c) have substantially higher counts in some
tiles.
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dom patterns are generally assumed to follow a Poisson distribution; although

visually similar to a regular pattern, clusters should be found. Finally, an ag-

gregated pattern exhibits more clusters than would be expected to arise from a

Poisson process. Note that this work does not assume or require that feature

points are Poisson-distributed, though some comments on this will be made later

in this chapter.

There has been considerable interest in the analysis of spatial distributions in

the statistical literature, and the technique employed here is already in widespread

use in ecology, such as the distribution of tree species in forests (e.g., [233]), and

the clustering of fast-food restaurants around schools [234] (see also [235]). In the

image processing domain, it has recently been applied to the detection of micro-

calcifications in mammograms [236] and the stitching of mosaics [237]. A common

way of analysing the distribution of spatial events is through the use of Ripley’s

K-function [238,239]. In the context of this research, it may be defined as

K(r) =
number of feature matches within r

λ
(3.4)

where r is the distance from a arbitrarily-chosen feature and λ is the density

(number of features per unit area) in an image (Figure 3.7).

As K(r) in (3.4) is a function of distance, it is able to describe the density of

feature points at many distance scales, an important property for this work. If

there are N feature points within area A and the distance between feature points

i and j is rij, then one can estimate K(r) as [238]

K(r) =
A

N2

∑
j

∑
I,i 6=j

Ir(rij)

wij
(3.5)
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Figure 3.7: Growing the radius around a point for evaluating the K-function

where Ir(·) and wij determine whether a point will be included in the calculation

at radius r and whether points lying on the boundaries of A are counted [224].

For a homogeneous Poisson process, one expects [233]

KP (r) = λπr2 (3.6)

If one plots KP (r) and an experimentally-measured K(r) using (3.5), as shown

in Figure 3.8, then regions where K(r) > KP (r) indicate that feature points

are aggregated, while regions where K(r) < KP (r) show regular feature points.

However, what is important here is not whether one is able to model the distribu-

tion of feature points as Poisson but rather whether K(r) indicates that features

are dispersed around the image (which is desirable for accurate determination of

homographies etc.) or are aggregated together.

Figure 3.9 shows measured K(r) and theoretical KP (r) curves for the three

patterns of features of Figure 3.6; it is clear from it that K(r) provides a good

description of the presence of clustering of feature points in an image.
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K̂

Figure 3.8: The K-functions of clustered and regular points. Clustered points
produce a response above the theoretical distribution line, while regular patterns
produce a response below it.

3.4 Evaluation Framework

From the discussion in the previous section, better coverage will result when the

points identified by a feature detector are more widely dispersed around the image,

i.e. K(r) < KP (r). If it should be the case that feature points are clustered at

one scale but dispersed at another, as illustrated in Figure 3.8, this needs to

be accommodated when assessing performance. This is most easily achieved by

integrating (or summing in the discrete case) K(r). For

α =

∫ rmax

rmin

K(r)dr (3.7)

(with a similar expression for αP , the integral of KP (r)), then smaller values of

α′ = α− αP (3.8)
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Figure 3.9: K(r) for the patterns in Figure 3.6 superimposed on KP (r)
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indicate better overall coverage. Note that the absolute value of the difference

in (3.8) was not used here as that would make it difficult to disambiguate fea-

ture detectors resulting in clustered or evenly-distributed features. This gives a

straightforward approach for identifying which of a set of feature detectors yields

the best coverage: for each detector, calculate α′ for each image in a database of

images and sum the values. The detector yielding the smallest sum of α′ achieves

the best coverage.

Clearly, a larger and more diverse image database should produce more reliable

results. In accordance with the principles laid down in the introduction to this

chapter, this work uses a newly-gathered set of 515 images for testing. An effort

was made to encompass a wide range of scene types, with indoor and outdoor

scenes with a variety of illumination and contrast. The images were captured

using a Nikon D300 camera equipped with a Nikkor 18–200 mm lens. Images were

captured in (lossless) 16-bit Nikon Electronic Format (NEF) and converted to

8-bit Portable Pixel Map (PPM) using dcraw1. The original 4288 × 2848-pixel

images were converted to greyscale and then reduced by averaging 3 × 3 regions

to a single pixel, resulting in 1429 × 949-pixel images. Some illustrative images

are shown in Figure 3.10.

The feature detectors considered were an extension of those evaluated in [46]:

EBR [53]; FAST [55]; Harris & Stephens [50]; HarAff, HarLap, HesAff and Hes-

Lap [46]; IBR [54]; SFOP [60]; SIFT [57]; SURF [58]; and SUSAN [49]. Publicly-

available (executable) code exists for all these detectors, and all were used with

their default parameter settings. Having obtained features from images using

these detectors, all subsequent processing was performed using R [224] and its

spat-stat library.

1Available at http://www.cybercom.net/~dcoffin/dcraw/

http://www.cybercom.net/~dcoffin/dcraw/
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Figure 3.10: Sample images from evaluation dataset
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3.4.1 Identifying significant performance differences

Although one could plot K(r) for all the detectors under consideration and simply

look for differences, this does not assess whether performance differences are likely

to be statistically significant. As all the feature detectors were evaluated on the

same image database, a more attractive approach is to use ANOVA, a generaliza-

tion of Student’s t-test. There are several assumptions that have to be met when

using ANOVA, the most important of which are that the variances resulting from

the different ‘treatments’ are the same, that the treatments involved are indepen-

dent, and that Normal statistics apply. The latter is likely to be the case due to

the Central Limit Theorem but the former two need to be examined experimen-

tally. The first-mentioned will be addressed in the following paragraphs, and the

independence of treatments in Section 3.5.

To establish this required homogeneity of variances, a generic logarithmic

transformation [136] of the form

y = ln(x) (3.9)

was performed on the data (the detector results for the evaluation criterion de-

fined above) so that the data points are squeezed together and show less variation.

This transformation does not guarantee that the resulting points will satisfy the

homogeneity assumption, so Hartley’s Fmax test [137] was employed on the detec-

tor results. This test involves calculating the ratio of the largest variance to the

smallest (to yield Fmax) and then consulting a table of critical values [138] for the

given number of treatments and degrees of freedom. The calculated Fmax value

was smaller than the value in the table (Fmax = 1.021 < 1.790), so the conclu-

sion is that the variances can be assumed be consistent with the constraints of
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ANOVA.

ANOVA is normally employed within a null hypothesis framework: one as-

sumes the various detectors yield similar spatial distributions and assesses the

evidence to accept or reject that assumption. In this evaluation, the null and

alternative hypotheses are defined as

H0 ≡ α′1 = α′2 = · · · = α′12

H1 ≡ ∃i : α′i 6= α′j, (i, j) ∈ (1, · · · 12), i 6= j
(3.10)

The null hypothesis H0 suggests that different feature detectors result in an

equal coverage (α′ values for the 12 feature detectors are either equal or very

close to each other), whereas the alternative hypothesis is that at least one of the

feature detectors performs differently. In this evaluation there are two independent

variables, images and feature detectors, while the dependent variable is α′ as

defined in (3.8). Hence, two-way ANOVA without replication was used for the

evaluation with p = 0.05, so that there is a one-in-twenty chance that the findings

could arise from features of the data.

3.4.2 Multiple range test

As discussed earlier, the criterion for choosing which detector performs best is to

determine α′ for each image in a database, sum the values together, and choose

the minimum. In doing so however, one must ensure that any difference obtained

is statistically significant. For this purpose, Duncan’s multiple range test [139] was

employed. This procedure is based on the comparison of the range of a subset of

the sample means with a calculated least significant range.

To perform this test, sd, the standard deviation of the difference between any
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two means, is first calculated. This is used to calculate

Qsd = Qvalsd (3.11)

with Qval obtained from tables [138] for a given number of degrees of freedom

and treatments. The value of Qsd is used to decide whether or not a difference is

statistically significant.

Next, the means are sorted into descending order of magnitude and the top

and the bottom means of the sorted list are taken. If the difference between them

is greater than Qsd , then one concludes that the difference is significant; otherwise,

it is not. This is repeated by comparing the second-largest value in the table with

the lowest one; and so on, until all treatments have been compared with the lowest

one. As the aim is to compare every combination of detector pairs, the smallest

mean is then removed from the list and the above procedure is repeated with the

remaining list elements.

3.5 Evaluation Results

The detected features and resulting variation in K(r) from one typical image of

the database for each of the feature detectors considered are shown in Figures 3.11

to 3.22.

The numbers superimposed on regions of these figures give the number of

features found within each region. This is intended as a guide only; a single value

of K(r) was calculated for the entire image. In each graph, the dashed red line

shows KP (r) and the full line K(r). From this single example, it is clear that

the performance of the detectors can differ substantially. However, the aim here
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Figure 3.11: Grid counts and K-functions for EBR
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Figure 3.12: Grid counts and K-functions for FAST
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Figure 3.13: Grid counts and K-functions for Harris & Stephens

●●●●
●●●●●●● ●●● ●●●●● ●●●● ●●●●● ●● ●●●●● ●●●● ●●●● ●●●●● ● ●●●●● ●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●● ●●●● ●●●●●●●●●●● ●● ●●● ●●●●●●●●●● ●●●●● ●●●●●●● ●●●●● ●●●● ●●●● ●● ●●● ●● ●●●●● ●●● ●● ●●● ●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●●●●

● ●●●●●●●● ● ●●● ●●●●●● ●●●●●●● ●●●● ●●●●●● ●●●●●● ●● ●●● ● ●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●● ●●●●● ●● ●●●●●● ●●● ●●●●●● ●●● ●●●● ●● ●●●●● ●●● ●● ●●● ●●● ●●●●●●●●●●● ● ● ●● ●●●●●● ● ●●● ●●●●●●●● ●●● ●●● ●●●
●●

●●●●●● ●●●● ●● ●●●● ● ●●●● ●●●●●●●●● ●● ●●●●●●● ●●●● ●●● ●●● ●● ●●●●● ●●●●● ●●●●●● ●●●●● ●●●● ●● ●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●● ●● ●●●●● ●● ●●●●●●●●● ●●●●●●●● ●●● ●●●● ●● ● ●● ●● ●●● ●●●●●● ●●● ●● ●● ●●●●●●● ● ●●●●● ●● ●● ●●●●●●● ●●●●●●● ●● ●●●●●●●●

●●
●●●● ●●●●●●● ●●●●● ● ●●●●●● ●●●● ●●●● ●●●● ●●●●●●●●●● ●●●● ●●●●●●● ● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●● ●●●●● ●●●●● ● ●●●●●● ●● ●●●●● ●●●●●●●● ●●●●●●●●● ●●● ●●●● ●●●● ●● ●●●●● ●● ●●●●●●●●● ●● ●●●●●●● ●●●●●● ● ●●● ●●●●●●●●●● ●●●●●●● ●●● ●●●●

●●●●● ●●●● ●● ●● ●● ●●●● ●●●●●●●●● ●●●● ●● ●● ●● ●●●●●●●● ●●●●●● ●●●●● ●●●● ●●● ●●●●●● ●●● ●● ●●●● ●● ●●● ●●● ●●●●●●●●● ●●● ●●

●●●●●● ●●● ● ●●● ●●●●●● ●●● ●●●● ●● ●● ●● ●●●● ● ●●
● ● ●●● ●●● ●● ●●●●● ●●●● ●●●●●●● ●●●●● ●●●●●●● ●●●●●●

●●●

●●
●● ●●●●●

● ●●●● ●●
●●●● ●●●●●●●●●●● ●

● ●●●●●● ●●●● ●● ●●●●

●●● ●●● ●●
●● ●

●●● ●●●
●

●●●
●● ●●●● ●● ●●●●● ●●

●

●●●●● ●●●●
●●● ● ●● ●●

●●
●●

●●● ●●● ●●
●

●●
●●

●●
●●●●●

●●●
●●

●●●●

●
●●

●

●●

●●●●●

●●

●●
●●

●

●●

●●

●

●●

● ●●

●●

●

●●

●

●

●●

●●

●

●●●●

●

●●

●●
●

174 71 0 0

284 257 118 234

0 0 0 0

0 0 0 0
0 50 100 150 200 250

0
40

00
00

80
00

00
12

00
00

0

r

K
(r)

Figure 3.14: Grid counts and K-functions for HarAff
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Figure 3.15: Grid counts and K-functions for HarLap
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Figure 3.16: Grid counts and K-functions for HesAff
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Figure 3.17: Grid counts and K-functions for HesLap
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Figure 3.18: Grid counts and K-functions for IBR
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Figure 3.19: Grid counts and K-functions for SFOP
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Figure 3.20: Grid counts and K-functions for SIFT
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Figure 3.21: Grid counts and K-functions for SURF
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Figure 3.22: Grid counts and K-functions for SUSAN
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is not to decide whether there are performance differences by inspection but to

determine whether any differences are statistically significant, as determined using

ANOVA.

The results of the entire evaluation exercise are summarized in Table 3.2, where

the homogeneity of variance confirmed in the earlier Fmax test is clearly visible.

The proximity of the mean and median values in the table indicates that the data

are evenly distributed around the mean.

Table 3.2: Feature detector evaluation results (in order of decreasing variance)

Detector Mean Median Variance
IBR 15.7574 15.7932 1.5100
SURF 16.4002 16.3894 1.5089
HesAff 16.8054 16.8530 1.5080
HarAff 16.6006 16.7535 1.5079
EBR 16.9497 16.8731 1.5068
SIFT 15.9797 16.0828 1.5060
Harris 17.5607 17.6470 1.5055
SFOP 15.3130 15.3786 1.4952
HesLap 17.8867 17.9302 1.4922
SUSAN 16.6132 16.8873 1.4813
HarLap 16.5286 16.6276 1.4796
FAST 16.0879 16.2916 1.4783

Initial testing with one-way ANOVA showed significant differences between

detectors but with rather large residuals. Subsequent examination using two-way

ANOVA (Table 3.3) with both images and detectors as sources of variation re-

sulted in more acceptable residuals. Both of these variations are larger than the

critical value Fcrit and hence are significant. More importantly, the differences

between detectors (714.60� 1.79) are much more significant than the differences

between images (22.10 > 1.11), allowing one to conclude that the variation is

mostly due to differences in the performance of the detectors rather than the
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inherent variations in the images — this is the ‘independence of treatments’ as-

sumption inherent in ANOVA that was mentioned in Section 3.4.1. Hence, the

null hypothesis stating that the feature detectors are performing equally can be

safely rejected. The P column shows that one can be confident that there is a

relationship between the independent variables and the dependent variable about

these results as P < 0.05. Furthermore, one can also see that values for the MS

(mean square) column are significantly different (269.61� 8.34), indicating that

the effects of the independent variables (i.e., images and detectors) do not interact

with each other.

Table 3.3: Results of the 2-way ANOVA test

Source of variation dof MS F P Fcrit

Images 514 8.34 22.10 0 1.11
Detectors 11 269.61 714.60 0 1.79
Error 5654 0.38
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Duncan’s multiple range test was applied to decide whether the differences

are significant or not. The results are summarized in Table 3.4, which shows the

statistical significance of the results. Values in the final column of the table were

calculated using (3.11). Each difference was compared with the value in the Qsd

column; if larger, it means that the performance of the operator listed to the left

is statistically better.

From the table, it can be seen that SFOP produces less aggregated patterns

and gives closer results to a regular distribution of features across images over the

database used, and does this significantly better than all other detectors. SFOP

is followed by IBR, SIFT, FAST and SURF in increasing order of producing

aggregated feature points. The results also reveal that the differences between

SUSAN, HarLap and HarAff are not statistically significant. The rest of the

feature detectors (HesAff, EBR, Harris and HesLap) were found to have significant

differences and produce less regular (more aggregated) feature points.

Table 3.5 orders the feature detectors by their mean α′, with a smaller α′ im-

plying better performance. It is instructive to compare this rank ordering with

that in [220]: there, SFOP provides the best coverage, while SIFT is better than

most of the other detectors considered in [220]. HarLap, HarAff, HesAff and

HesLap were ranked similarly to [220]. As this work uses a different way of mea-

suring coverage, employs different imagery and uses a statistical test to identify

performance differences, yet still achieves a broadly similar ranking of detectors

to [220], one can be reasonably confident that this rank ordering genuinely reflects

the detectors’ performances.
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Table 3.5: Feature detector evaluation results (sorted by mean according to the
evaluation criterion and for the multiple range test)

Feature Detector Mean α′

SFOP 15.313
IBR 15.757
SIFT 15.980
FAST 16.088
SURF 16.400
HarLap 16.529
HarAff 16.601
SUSAN 16.613
HesAff 16.805
EBR 16.950
Harris 17.561
HesLap 17.887

3.6 Image Stitching Performance

To assess the practical value of having a good coverage of detected features and

confirm the findings of the previous section, experiments were conducted on stitch-

ing images into mosaics. Here, one combines images with overlapping regions to

produce higher-resolution images such as panoramas [240], the aim being to ob-

tain a seamless transition from one image to another, avoiding ghosting or blurring

effects in the panorama.

In conventional image stitching applications, one takes photographs of a scene

from different viewpoints and then combines these photographs as shown in Fig-

ure 3.23.

The approach uses the homography matrices from the centre image to the

left and right images. The homography matrices are computed using the feature

correspondences from both images. Note that the minimum bounding rectangle of
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Figure 3.23: Using homography for image stitching. The homography matrices
from the centre image IC to the left and right images (IL and IR respectively) are
computed from feature correspondences defining the overlapping region.

these correspondences will define the overlapping region (assuming there is a good

coverage of features in this region). Then, the inverse of these homographies are

applied to the left and right images so that their overlapping regions are aligned

with the image in the centre:

IF = H−1C LIL ⊕ IC ⊕H
−1
C RIR (3.12)

where the ⊕ operator takes the maximum of the two pixel values to produce the

final image IF which, obviously, has a higher resolution than all the individual

images.

Using this idea, an initial experiment was performed to analyse the stitching

result visually using a simple image divided into three smaller images as shown

in Figures 3.24(a–c). Correspondences of features detected by HesLap and SFOP

were found and the homographies calculated using RANSAC. With these homo-
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graphies, the stitching was performed to obtain Figures 3.24(d–e).

(a) Left image (b) Centre image (c) Right image

(d) Stitching result using HesLap (e) Stitching result using SFOP

Figure 3.24: Example of a conventional image stitching process for testing the
effect of coverage. Images in (a–c) are stitched together. Note the misalignment
in (d) around the gate when the homography was computed using HesLap which
is not visible in (e) where SFOP was used.

The aim of the evaluation in this chapter was to propose a quantitative met-

ric that does not rely on visual assessment and can be calculated automatically.

It can be seen that the initial approach described above requires some manual

work (i.e. dividing the image, etc.) in order to obtain the ground truth infor-
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mation. Furthermore, this simple division only included a translation, which is

not adequate for a reliable assessment. For this reason, a different, yet similar in

principle, method was used so that it would be possible to compare the output

image with ground truth information.

The experiment used the publicly-available Oxford Buildings dataset2. Several

images of size 1024 × 768 pixels were selected and regions of 512 × 384 pixels

extracted using bilinear interpolation with rotations of 10, 20, 30, 45, 60 and 90

degrees, as shown in Figure 3.25.

Features from the detectors evaluated in the previous section were matched on

both the original images and the extracted regions and these were used to calculate

the homography required to re-align them. The realignment is performed by

warping the extracted region using the inverse of the homography, which models a

translation and a rotation. Following realignment, the output image was produced

by selecting the larger of the pixel values in the overlap region.

Figures 3.26 and 3.27 show the stitching results in cases where the coverage

was poor and good respectively. The clusters of features and areas devoid of

them are apparent visually in Figure 3.26(a), and this results in the K(r) of

Figure 3.26(b); this can be contrasted with the better distribution of features and

the corresponding K(r) in Figure 3.27(a) and (b).

The effect of poor coverage on the stitching result manifests itself principally as

ghosting in the stitched image of Figure 3.26(c), while the image in Figure 3.27(c)

has no such artefacts. To confirm the visual findings, Figures 3.26(d) and 3.27(d)

show normalized cross-correlations between the original and stitched images, and

the values are higher when the coverage is better.

2Available at http://www.featurespace.org/data

http://www.featurespace.org/data
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Figure 3.25: Extraction of regions with different rotations
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(a) Detected features
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Figure 3.26: Stitching results when the coverage is poor



CHAPTER 3. IMAGE FEATURES 101

(a) Detected features
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Figure 3.27: Stitching results when the coverage is good
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Figure 3.28 presents the estimated coverage values against these cross-correlation

values across the entire database. It can be seen that as the coverage increases

(worsens), there is a corresponding decrease in the cross-correlation. The best-fit

line through the data is shown on this figure; while most of the points do not lie

on this line, it is clear that the general trend is consistent.
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3.7 Remarks

This chapter started with a discussion of finding the homography from feature

correspondences in images. The estimated homography represents a transforma-

tion from the source image to the destination image and RANSAC is a robust

approach for finding a good estimate.

Later, a quantitative, robust measure was proposed to evaluate the spatial

coverage of feature points in an image, able to determine whether points are

aggregated at multiple scales. Based on this measure, an evaluation of a range of

state-of-the-art feature detectors was performed; the evaluation method regarded

the imagery and the detector as the two independent variables affecting coverage,

and significance was assessed using ANOVA.

The results revealed that there is indeed statistical significance between the

performances of detectors. SFOP was found to be superior to other detectors,

while there are also some detectors whose performance differences were not statis-

tically significant. These findings are broadly consistent with those obtained by

other researchers using different approaches, increasing our confidence that these

performance differences are real.

Experiments were also performed on stitching overlapping regions into panora-

mas, confirming that better coverage yields a better quality results which do not

have any blurring or misalignment problems.

From the list of features evaluated in this chapter, SURF was selected as the

detector of choice for the vision-based user tracking algorithm described in the

following chapter. The reason behind this is that most feature detectors that yield

a better coverage than SURF in Table 3.5 do not include a descriptor. The one

exception to this is SIFT which is not very suitable for real-time operation.



CHAPTER 4

VISION BASED USER TRACKING

Finding the position of the user is crucial in AR applications, as the pose of the

user defines the view that will be used to visualize any 3D models. Furthermore,

as mentioned in section 2.9, using a sensor for both finding the position of the user

and acquiring the images which will be used as the background for augmentation

is a better way of utilising available resources.

From the literature it is known that pure SFM approaches cannot be used in

a real-time system since they include computationally expensive methods such

as bundle adjustment, which uses an iterative optimization method to refine the

initial motion estimate. Such methods are not considered suitable for AR applica-

tions since on-line pose tracking is required, while those methods employ off-line,

batch processing solutions [86,90]. Furthermore, SFM methods are prone to errors

due to noise [78] and cannot guarantee repeated localization and robustness [75].

SLAM methods, widely used by the robotics community, were proposed as

104
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alternatives to SFM for real-time pose tracking for AR [196, 198, 199]. These

methods offer an incremental solution to the tracking problem, as new features

are added to the system state when the camera is observing an area that was not

previously mapped. However, this ability comes with a problem known as data

association, one that must be overcome in all SLAM systems.

Ideally, each feature stored in the system corresponds to a real-world land-

mark. If data association is not performed properly, the system will add new

features from the same landmark to the system state and unnecessarily grow the

filter because the system cannot recognize these landmarks using the available

representation. Growing state size reduces the accuracy of tracking since this

causes linearisation problems. This problem also results in a decrease in com-

putation speed. Hierarchical approaches [108, 116] would help here if the filter

can converge and perform accurate tracking for a small area, so that this can be

extended to neighbouring areas and finally covering a large area.

A second problem is due to the increasing size of the environment, as described

later in the chapter. Indoor environments where SLAM methods [196, 198] work

accurately require fewer features for tracking. Furthermore, the structure of indoor

environments also facilitate the use of such systems: for instance, the lighting in

an indoor environment does not change as much as in an outdoor environment.

Considering the promising results from studies like [69,199,213], this research

initially started with a monocular SLAM implementation, which unfortunately

could not achieve the required accuracy for tracking. Following this, a different

approach was taken, using selected frames from a sequence, and this approach

provided better results by incorporating ideas from the analysis of the spatial

distribution of image features presented in the previous chapter.

The rest of this chapter starts with a discussion of camera calibration, which
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aims to find the internal parameters of the camera that affect the imaging process.

The calibration result found will be used later in the chapter to create realistic

projection matrices, along with external parameters obtained using a motion es-

timation algorithm.

The filtering methods discussed in section 2.2 will be examined in more detail,

giving a better insight of the theory and practical implementation of the two most

popular types of filters, namely Gaussian (e.g. KF) and non-parametric (e.g. PF).

Discussion will include how these two filters update their current states using

observations from the environment they model. These filters will also be used

in a sample tracking case of an imaginary user following a sinusoidal trajectory.

Tracking results will be given and a comparison between the two filters will be

presented.

The discussion continues with a recent implementation of the visual EKF

SLAM algorithm [213,241]. Details of the algorithm will be provided in steps since

it follows the same prediction–measurement–update cycle of a KF, in addition to

the different representations used for features in order to achieve better tracking

accuracy. Examples of how this implementation can fail in case of severe rotations

will be provided, along with a discussion of why this approach could not be used

in an outdoor environment.

The chapter then introduces an alternative approach, based on two-view ge-

ometry, using keyframes extracted from input images acquired by a single camera.

The description of this approach starts with a statement of the assumptions and

challenges due to outdoor operation and alignment of the camera, since both of

these factors affect feature matching due to changes in scale and calculating depth

of features. Details of this approach will be provided as steps including keyframe

extraction, finding different motion estimate solutions and finally using triangu-
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lation in order to decide on the final motion estimate among others. This motion

estimate is used in a way similar to dead-reckoning, as will be described later in

the chapter.

Finally, results will be presented for two feature descriptors on two different

datasets of a user walking in an outdoor environment.

4.1 Camera Calibration

Camera calibration is an important process in almost all applications involving

vision in a 3D world. Calibration means finding camera parameters which affect

the imaging process in order to model this in a more realistic way than the ideal

camera representation described in section 2.1.1. The camera parameters can

be examined under two groups namely internal (e.g. focal length, distortions,

etc.) and external parameters (e.g. position and orientation), described in the

following.

Internal (intrinsic) parameters are directly related to the imaging process in

any vision application. Focal length is represented as f and denotes the distance

between the optical centre of the camera (C) and the imaging plane, with centre

c = (cx, cy), as shown in Figure 4.1.

In CCD cameras, there is possibility of having pixels that are not square [31].

For this reason, additional scale parameters (mx and my) in the x and y directions

respectively are used to scale the focal length: fx = mx×f and fy = my×f . sθ is

called the skew parameter, sθ = cot θ where θ is the angle between the pixel axes

(Figure 4.1). In most cameras this angle is close to 90◦, so sθ is close to 0 [25].
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Figure 4.1: Internal camera parameters. C is the optical centre while c = (cx, cy)
is the principal point, the centre of the image plane.

Using these parameters a calibration matrix is constructed

K =


fx sθ cx

0 fy cy

0 0 1

 (4.1)

This calibration matrix is applied to the camera matrix (described in section 4.4)

for projecting features.

In addition to the parameters described above, there are also parameters, the

distortion coefficients, which model the aberrations of optical lenses [242]. For

instance, if the lens is not completely perpendicular to the imaging plane, the

locations of the pixels will differ from their ideal values. These distortions can be

in form of spherical aberration which is the problem of incoming light rays passing

through different focuses due to the imperfections in the spherical shape of the

lens; or coma which means that features close to the periphery of an image have

a different shape to those near the centre.

In a simplified distortion model, there are two types of distortions [25, 243].
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The first type is radial distortion which can simply be explained by lines appearing

to bend near the edges of an image. Tangential distortions are due to alignment

problems of the lens relative to the imaging plane during the manufacturing pro-

cess of the camera. In this distortion, the lens is not placed perfectly parallel to

the imaging plane and this imperfection manifests itself as an elliptic displacement

of projected points [39].

These parameters are represented in form of a 5× 1 vector kc:

kc =
[
k1 k2 p1 p2 k3

]
(4.2)

where k1, k2, k3 are the coefficients for radial distortion and p1 and p2 the tan-

gential distortion parameters. These distortion parameters are mainly used in

chapter 5 where projections of both RGB and depth sensors are used.

The second type of parameters, known as external parameters, define the

position and orientation of the camera in world coordinates. The position is

represented as a translation matrix t and the orientation as a rotation matrix R.

These parameters do not directly affect the imaging process in case of a stationary

camera and a static scene. However, these parameters will obviously contribute

to the process for the case of a moving camera and the dynamic scene. These two

external parameters are used to create a camera matrix which will be presented

later in section 4.4.3 in order to calculate the projections of features according

to the position and orientation parameters obtained using the keyframe based

algorithm of section 4.4.

Camera calibration was performed in order to find the intrinsic distortion

parameters of the simplified model using the Camera Calibration Toolbox for
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Matlab [35]1. The web-camera used for this purpose and in the rest of the thesis

is a Logitech QuickCam Pro90002 which has a 2 megapixel sensor, a diagonal FOV

of 75◦ and can record videos at 30fps. In the experiments, images of 640 × 480

pixels were captured.

For the calibration process, a rectangular grid was prepared (Figure 4.2) and

attached to a cardboard measuring 18cm×27cm.

Figure 4.2: Calibration grid

Images of the calibration grid were captured. The grid was moved in the

scene and tilted, since one needs to acquire images from different positions and

orientations. Usually 20–25 images are found to be enough for the calibration

process [35]. Figure 4.3 shows some of the images acquired for calibration.

The toolbox works semi-automatically in that the user first needs to select the

outer boundary of the calibration grid of Figure 4.2 in each of the images. This

information is used to estimate the positions of corners for a given size of each

square (30mm). During this phase, the user can also enter an initial estimate of

1Available at http://www.vision.caltech.edu/bouguetj/
2http://www.logitech.com/en-gb/support/3056

http://www.vision.caltech.edu/bouguetj/
http://www.logitech.com/en-gb/support/3056
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Figure 4.3: Calibration images
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the distortion if the estimated positions for the corners are not aligned with the

actual corners. Then, corner features are extracted to 0.1 pixel accuracy using

this initial estimate. After this step, the toolbox first finds a closed-form solution

for the calibration parameters and then performs an optimization in order to

minimize re-projection errors.

The results of the calibration process are presented in Table 4.1 along with

the tolerance values calculated by the toolbox. The principal point was found

to be at (328.064 ± 6.386, 269.565 ± 9.846), indicating that the estimated values

can be between 321.678 and 334.45 for the x component of the principal point

and between 259.719 and 279.411 for the y component. Ideally this position was

expected to be exactly at (320, 240) for images of 640 × 480 pixels. The skew

parameter was found to be 0, indicating that the angle between x and y axes are

exactly 90◦.

Table 4.1: Calibration results for distortion parameters

Value Tolerance (±)

x y x y
Focal length 884.38 876.373 6.916 7.019

Principal point 328.064 269.565 6.386 9.846
Skew 0 0

k1 k2 k3 k1 k2 k3
Radial coefficients 0.1263 -0.2237 0 0.04466 0.4288 0

p1 p2 p1 p2
Tangential coefficients 0.002517 -0.0012 0.00519 0.003302

Figure 4.4 provides visualizations of the effect of the distortions on the pixel

locations. The arrows show the direction of displacement, while the numbers on

the arrows show the amount of displacement of pixels. These visualisations help

decide on the distortion model to be used for feature searches in the images in the

actual SLAM implementation described later in the thesis.
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(a) Radial distortion (b) Tangential distortion

(c) Complete distortion

Figure 4.4: Visualizations of the distortion parameters, obtained using [35]
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By looking at the visualization of the distortions, it can be deduced that

the effect of the tangential distortion is not significant for the camera used in

the tests. In addition, the displacements of pixels in the radial distortion were

deemed to be not significant as they do not exceed 6 pixels: the reason for this

is the computation time required for undistorting an image. In any case, this is

compensated for by the search regions described in section 4.3.2.

4.2 Filtering Methods

An algorithmic model can be considered as an approximation to the real world

it is modelling. There can be some factors that cannot be directly incorporated

into a model because they cannot always be predicted at the time of modelling,

as described earlier in section 2.2. These unpredictable factors may adversely

affect the system performance [244]. Filtering methods are used to handle the

unpredictable factors of a process or a system. For a system trying to track the

position of a person, these can arise from a variety of sources [94,120].

First, it is not easy for the tracking system to predict the motion pattern

(walking slowly, fast, standing, turning, etc.) which the user is following in ad-

vance. If this was known it could be given as an initial estimate for a filter which

is investigated in chapter 6. For this reason, tracking a person is more challenging

than tracking a robot which can be given motion commands and are almost guar-

anteed to follow them except for mechanical limitations such as wheel slip [245].

Even if one assumes that people can also follow motion commands given to them,

then the movement of two different users will be different since the motion cannot

be easily replicated by different users.

A second important source of uncertainty is due to sensor limitations, or static
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errors as mentioned in section 2.8. For instance, a GPS sensor is not perfectly

accurate in terms of the positional information it provides and, what is worse,

the accuracy is affected by the visibility of satellites. Similarly, for a camera the

resolution of the images acquired by it is limited; and visual noise can be a problem

in the detection of image features from real world objects in a repeatable way.

Finally, errors in the system model arise because of algorithmic approxima-

tions. If the phenomenon is not modelled perfectly, then it will not be surprising

when the approximation fails to converge. Certainly, this depends on the nature

of the phenomenon. If the initial model is failing because the phenomenon is

constantly changing, then an adaptive model may be required (see chapter 6).

Insufficient tuning of parameters may cause additional levels of uncertainties in

the system, a problem also related to the modelling.

The systems proposed in this thesis make use of two types of filters, namely

Gaussian (e.g. KF) and non-parametric filters (PF). These two types are explained

using an example case of simple location tracking. Let us consider a person walking

along a sinusoidally-shaped path defined by

y = 4 sin x (4.3)

To model the person’s path, two components of the position in pixel coordinates

need to be stored in a state, denoted x, where

xi = (xi, yi)
T (4.4)

Note that the position of the person is modelled as a point, so the orientation is

not a considered in this example.
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State x is where the system believes the person is at time ti. An initial position

may or may not be available in practice, though it is usually considered that this

position is the one when the tracking started. For this example, the person is

considered to start walking from a known position.

It is also assumed that the person informs the system about his/her position

(as x and y coordinates in pixels) using an accurate sensor (similar to a differ-

ential GPS) at regular intervals at a frequency high enough to perform tracking

accurately. Now, two different filtering algorithms (a KF and a PF) will be used

to track the position of the person.

4.2.1 Kalman filtering

The KF is a Gaussian filter used to model a continuous linear system recursively

with process uncertainty and noise [246]. A state denotes the condition of the

system at a given time. As the system is continuous, there will be many states in

the system and one state will move into the next state with a transition function.

The transition function predicts the next state x̂ based on the current state x.

As noise is unavoidable in a real process, measurements must be taken in order to

verify and, if necessary, correct this prediction. The whole system can be modelled

in this manner and these methods can be applied to processes such as control

systems or tracking applications [247]. This cycle of prediction, measurement and

update is illustrated in Figure 4.5.

For the problem of tracking the person following a sinusoidal path of (4.3), the

transition function must be defined. Before proceeding, two additional parameters

are added to the state in order to model the velocities as well as positions so the
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xi F

u

x

Q

R

h

z

Xi+1

t t+1

Prediction Measurement Update

Figure 4.5: Prediction-measurement-update cycle of the KF following [117], [248]
and [105]. A transition function F is applied to the state (yellow circle) in order
to predict the next state shown with the dashed circle along with the process
noise Q. The control input u can also be used at this stage. At the measurement
phase, a measurement prediction h is generated. This prediction (shaded cross) is
an idea of the system about what the measurement will be and may be different
from the actual measurement result shown with white cross and denoted by z. A
measurement noise R may also be incorporated when the actual measurement will
be taken. Next step is updating the state with the measurement so the system
will be ready for the next iteration of the cycle.
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new state will be

x = (x, y, vx, vy)
T (4.5)

The tracking system does not have an idea of what kind of a trajectory the

person is following, so it uses a simple transition function denoted as F with ∆t

being the time passed between two predictions (taken as 1 for this example):

F =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(4.6)

Giving motion commands to the person as discussed in the previous section

is not possible in this case so the control input u will not be used. However, the

process noise Q cannot be avoided so these are incorporated into the prediction

as shown in Figure 4.5.

For sake of simplicity, predicted measurements h are taken as the coordinates

of the person after the prediction phase and the noise level for the actual mea-

surements z is low due to the accurate sensor used. The process of KF can now

be described as in Algorithm 1.

The variables used in the KF algorithm have been explained with the exception

of two important ones: Σ and K. The uncertainty is handled by the system

using the state covariance Σ. In other words, this variable stores the amount of

confidence the state vector has about the system status. Σ can also be used to

visualize this confidence by using error ellipses or ellipsoids as described by [241].

The second variable K is the Kalman gain, which can be described as the weight

of the measurements taken at time ti in the calculation of the next state xi+1.
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Algorithm 1 Kalman filter

Require: xi: current state, Σi: current state covariance, zi: measurement
// Prediction
x̂i+1 = Fxi
Σ̂i+1 = FΣiF

T +Qi

// Measurement
Observation zi is taken as position

// Update
Ki = Σ̂ih

T
i (hΣ̂ih

T
i +Qi)

−1

xi+1 = x̂i+1 +Ki(zi − hix̂i+1)
Σi+1 = (I −Kihi)Σ̂i

Having described the KF algorithm with all its parameters, Figure 4.6 shows

the tracking result for the person moving with the trajectory of (4.3).

From the tracking result, it can be seen that the filter makes incorrect predic-

tions initially — the green dots do not follow the red circles. However, once the

filter converges, tracking performance becomes stable and continues until the end

of the motion.

4.2.2 Particle filtering

A PF also performs state estimation as a KF. The difference is that a KF rep-

resents the posterior using a fixed functional form [94] whereas a PF uses a rep-

resentation with particles which are independent random variables [92] uniformly

distributed in the state space. This distribution allows representing a larger set

of distributions, not only Gaussian, and hence having a greater advantage for

non-linear motion types. This power of particle filtering comes with a trade-off,

as mentioned in section 2.2.2.

For the problem of tracking a person positioned at x = (x, y)T , the initial
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Figure 4.6: Tracking a person with KF. Red circles show the actual trajectory of
the person. Green dots indicate the predicted position and blue rectangles show
the state of the KF after the update.
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state is set using this known position and the particles scattered within a 50-pixel

radius of that point. The state x is then updated using two models, one dynamic

and the other observational.

The dynamic model A generates the predicted (hypothetical) state x̂ and is

initialized to the identity matrix for simplicity:

A =

 1 0

0 1

 (4.7)

At each frame the predicted state is calculated for all particles (1 . . . n):

x̂i = Axi (4.8)

Particle weights are updated using the observational model. Measurements (m =

(mx,my)) are used to refine the particle confidences using Gaussian sampling as

wix = e
−1

2σ2x
(mx−pix )

2

wiy = e
−1

2σ2y
(my−piy)

2

wi = wix × wiy

(4.9)

where wi denotes the weight of particle i and σ2
x and σ2

y are the variances of the

samples for the x and y coordinates of the position. The hypothetical values of the

person’s position are stored in pix and piy . This process is followed by re-sampling,

in which the updated confidences will be used to create a new set of particles of

the same size [39,94].

Figure 4.7 shows the tracking result for the walking person following the sinu-

soidal trajectory of (4.3) using the Condensation algorithm. The experiment was
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run with 200 particles with a search region of 50 × 50 pixels for a total of 1000

frames.
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Figure 4.7: Tracking a walking person with PF. Red circles show the actual tra-
jectory of the person. Hypothetical positions suggested by the samples are shown
with green circles and blue rectangles indicate the position suggested by the sam-
ple with the highest confidence. The estimation is performed using 200 particles
from which 25 are selected based on confidence levels and displayed.
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The changes of particle confidences are depicted in Figure 4.8. The red line,

showing the mean particle confidence, moves upwards on frames where the mea-

surements support the hypothetical positions proposed by each sample; and down-

wards when the estimate is not correct.
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(a) Frames 1 (top) to 4
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(b) Frames 249 (top) to 252
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(c) Frames 501 (top) to 504
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(d) Frames 749 (top) to 752

Figure 4.8: Change in particle confidences for different frames, red line indicates
the mean confidence.

The changes in confidence levels are further analysed in Figure 4.9. This analy-

sis reveals that the frames where the mean confidence level decreased significantly

correspond to when the person changes his/her direction of motion i.e. where the

sinusoid has its peaks.
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Figure 4.9: Mean values for particle confidences throughout 1000 frames. The
shaded regions show when the confidences decrease significantly due to the change
in direction at the edge locations of the trajectory.

4.2.3 Comparison

The two examples of filtering explained in sections 4.2.1 and 4.2.2 have shown that

KF and PF can be used to follow a trajectory. Each filter has its own strengths

and weaknesses depending on the application, and the idea here was not to praise

one filter over the other but to provide an example of tracking. In this particular

example, the results from the KF is better than the one from PF mainly because

of the small number of particles. Experiments with 500 particles produced better

results, though using so many particles significantly reduced the speed.

Following the discussions in sections 2.2 and 4.2, a comparison for these two

types of filters is given in Table 4.2.
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Table 4.2: Comparison between KF and PF

Weaknesses Strengths

KF
• Linear inputs and outputs • Fast filter
• Filter may not converge
if error is not Gaussian.

• Perfect estimator if
assumptions are satisfied.

PF

• Accuracy may suffer
due to simple modelling.

• Ability to model
non-linear transformations

• Computationally expensive • Non-parametric
• Trade off between
accuracy and computational cost

• Simple model

4.3 A Monocular SLAM Implementation Using

EKF

The design of the vision-based part of the complete tracking system of chapter 6

was initially started by implementing a monocular SLAM system using an EKF,

following the approaches of Davison [69] and Civera [213]. The choice here was

mainly due to the performance of this algorithm in different applications which

were mainly indoor environments.

An alternative approach was the one proposed by Mouragnon [85], which uses

the SFM methods (i.e. PnP together with bundle adjustment) described in 2.1.3,

which was tested on an autonomous car. The latter approach was not chosen for

this research since the intended system would be tracking a user, which is more

challenging than tracking a car due to the first source of uncertainty mentioned

in section 4.2. Furthermore, the system demonstrated in this thesis requires time

for not only tracking the user but also generating graphics in order to prepare the

output for augmentation.

The following sections provide details of the main design structures and the

principles underlying this implementation and will provide tracking results for a
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hand-held camera.

4.3.1 Complete state model

The complete state vector x consists of two main parts. The first part is the

camera state and the second part is reserved for features. This is represented as

xt =
(

xv, f1, f2, . . . , fn

)T
(4.10)

The camera state storing the position and orientation of the camera is represented

with xv. The rest of the state vector is composed of features observed from the

environment, each represented with fi.

Camera state

The part of the complete state model representing the camera is called the camera

state (a.k.a. vehicle state) and comprises several parameters

xv =
(

rWC , qWC , vW , ωC
)T

(4.11)

where rWC =
(
xc, yc, zc

)T
is the 3D position of the centre of the camera

(the optical centre) in the world coordinate system. qWC is a quaternion used

to store the orientation of camera with respect to the world frame. Quaternions

are used since an orientation can be represented with only four parameters and

so will not add many parameters to the state hence will not add to computation.

vW stores the linear velocities of the camera in 3 axes and ωC stores the angular

velocities, represented in the camera coordinate system. The complete camera

state comprises 13 components.
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Feature representation

The features in the environment are shown as fi in the second part of the complete

state vector. Each feature here corresponds to a 3D feature in the environment

through which the camera is moving. The only sensor here is a camera and these

features are observed using this. Features are represented in one of two possible

methods: inverse depth coordinates yi and Cartesian coordinates xi; these are

described below.

The inverse-depth representation is based on [249] where using inverse depths

was proposed in order to improve accuracy in depth estimation. The method

presents an undelayed initialization and can handle features which are far from

the camera, presenting little parallax (see section 4.4 and Figure 4.14 for a more

detailed discussion on this). The infinity of a point is defined as the distance

where the camera cannot observe the parallax although it is moving relative to

the feature [213].

This representation shown in (4.12) models a feature point with 6 parameters

including the camera location when the feature is observed for the first time,

azimuth and elevation of the ray from the centre of the camera to the feature and

the inverse depth parameter.

yi =
(
xc,i yc,i zc,i θi φi ρi

)T
(4.12)

where xc,i, yc,i and zc,i show the 3D camera coordinates at the time when the

feature was first observed. θi, φi and ρi represent the azimuth, elevation and the

inverse depth of the feature fi in the camera coordinates respectively.

Using the inverse depth representation, features can be initialized with a single

image observation, meaning that they can be used to estimate the camera position
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and orientation. For the initial frames, the feature does not contribute much in

estimating the position of the camera but it is helpful in estimating the orientation.

This initial hypothetical feature information will be improved as the camera moves

in the scene and observes better parallax from the feature. The actual point

feature represented with (4.12), can be shown as follows:

xi =


xi

yi

zi

 =


xc,i

yc,i

zc,i

+
1

ρi
m(θi, φi) (4.13)

where m(θi, φi) is a unit vector extending from the camera’s optical centre to the

feature and defined as

m (θi, φi) =
(

sin θi cosφi, − sinφi, cos θi cosφi

)T
(4.14)

As mentioned above, the inverse depth representation is used when a feature

is observed by the camera for the first time and this initial representation is

converted to the second representation of classical Cartesian coordinates, where

the position of each feature is represented as

xi =
(
xi yi zi

)T
(4.15)

This conversion from the inverse depth to the Cartesian representation takes place

after a feature has been observed by the camera multiple times (i.e. until the depth

of the feature can be estimated with some confidence level [69]). This conversion

reduces both the size of the state and the state covariance since the feature is now

stored using 3 parameters rather than 6.
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4.3.2 EKF SLAM phases

The complete EKF SLAM algorithm can be broken down to 3 main phases: the

prediction phase, the measurement phase and the update phase, as in Algorithm 1.

These phases are repeated for each frame captured from the camera. This sub-

section presents these phases.

Prediction

Prediction corresponds to the first two lines Algorithm 1. This phase starts with

the estimation of µ̄t+1 using the transition function fv(µt) for the camera. Note

that the control input ut is not actually used in fv in (4.16) since it is not required

in monocular SLAM.

fv(µt) =


rWC
t+1

qWC
t+1

vWt+1

ωCt+1


=


rWC
t + vWt ∆t

qWC
t × ωCt ∆tquaternion

vWt + VW

ωCt + ΩC


(4.16)

∆t is the time difference between two calls to the prediction function. The 3D coor-

dinates of the camera are updated according to the physical law of new position =

current position + speed × elapsed time. The new position is calculated using

linear velocities. For the orientation of the camera, the same logic applies, though

it is more involved as the orientation is stored as a quaternion. VW and ΩC repre-

sent the noise parameters for the linear and angular velocities respectively. These

parameters are used to obtain better estimates for the camera motion, which uses

a constant velocity model.

As the features in the environment are considered to be static, they are not
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affected by the prediction therefore the main transition function can be given as

f(µt) =



fv(µt)

0f1

0f2
...

0fn


(4.17)

Measurement

The measurement phase tests the validity of the predicted position from the pre-

vious phase. First, a visibility test is applied to each feature in order to decide

which features can be observed for measurement. This test is based on the cur-

rent (predicted) camera position and orientation estimate. For features with an

inverse depth representation, a directional vector pointing to the feature is calcu-

lated and projected onto image coordinates, whereas features with the Cartesian

representation are directly projected onto image coordinates.

An innovation covariance S, which indicates the uncertainty in the measure-

ment, is computed for each visible feature fi in order to define a search region for

the feature using the measurement prediction h and measurement noise R, shown

in Figure 4.5. This is accomplished using

St,i = ht,iΣ̄th
T
t,i +Rt (4.18)

where

Rt = σ2
R

 1 0

0 1

 (4.19)

The resulting St,i defines an elliptical search region around the predicted coordi-
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nates of the feature in the image [241]. This ellipse is defined as follows: the centre

coordinates of the ellipse is the measurement prediction h. The region defined by

the ellipse with 2σ that corresponds to 95.5% confidence level (3σ can also be

used for a confidence level of 99.7% but the increased region size will increase the

computation time when searching for a feature.). The axes of the ellipse along x

and y coordinate axes are

axisx

axisy

=
2×√σ0,0

2×√σ1,1
(4.20)

where σi,j corresponds to the ith row and jth column of the S matrix. The orien-

tation of the ellipse, θ, is calculated as

θ =
1

2
tan−1

(
2σ0,1

σ1,1 − σ0,0

)
(4.21)

The ellipse defined here can be used to display the search region as an ellipse

on images (or an ellipsoid in a 3D view); however, axisx and axisy are used to

define the boundaries of the actual search rectangle in the image as this is required

for finding feature matches. These feature matches can be found using NCC on

the patches surrounding the features or by comparing descriptors as discussed in

section 2.1.2.

Update

This part constitutes the last three lines of the Algorithm 1 and is easier than the

first two phases as the system has all the necessary information at this stage to

perform the update on the state and its covariance. It is also important to note

that only the features that can produce a successful match are used to update the
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filter since only they can provide useful information. Following this phase, the

whole operation will be repeated for the next frame acquired by the camera.

4.3.3 Results for EKF SLAM

Having described the visual monocular SLAM algorithm, this section presents

results for the initial implementation. Figure 4.10 presents a view of the visual

tracking of features. Each feature is surrounded with a search region indicating

possible locations at which the feature may reside. Selection of features were

carried out using GFT described in section 2.1.2. It can be seen that some features

can be successfully matched while others fail to produce a correspondence.

3D views of the tracked features are depicted in Figure 4.11. The sizes of

the yellow ellipsoids indicate the amount of uncertainty present in feature posi-

tions. Notice how these uncertainties decrease as more successful measurements

are taken from features while the camera moves. Successful feature measurements

also play an important role in decreasing the size of the filter state since features

stored in inverse-depth representation are converted into the Cartesian system af-

ter their depths are estimated with some confidence, as described in section 4.3.1.

After several frames, tracking tends to lose accuracy because of the camera’s

sudden and erratic (e.g. upside down) motion and the system starts to make

incorrect predictions. The problem deteriorates when a wrong match is found in

an incorrectly predicted location due to the simple descriptor used. This leads to

a case in which the camera’s predicted position (even it is incorrect!) is accepted

because the features have resulted in a ‘successful’ match as shown in Figure 4.12.

The problems occurring due to incorrect feature position prediction and spu-

rious measurements obtained resulted in serious tracking failure which can be
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(a) Prediction and matching of features

(b) Feature #14 is failing to produce a successful match

Figure 4.10: Selected features for tracking. Blue rectangles indicate the search
regions around features described in Section 4.3.2. Yellow circles show the pre-
dicted locations of features and green circles show successful matches. Unsuccess-
ful matches are shown in red circles. Dataset from [213]
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(a) Ellipsoids are relatively large at the beginning.

(b) As the camera moves and takes more successful matches, positional
uncertainty for both the camera and the features are decreasing, hence
the size of the ellipsoids.

Figure 4.11: 3D view of camera path and features. Yellow ellipsoids show the
features’ locational uncertainties. The camera trajectory is shown by the red line.
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Figure 4.12: Incorrect data association. Notice where the initial position of Fea-
ture #14 (as well as other features) in Figure 4.10(b) was and where it is being
predicted and matched in later frames.

described as follows:

• Data association (see section 2.3.1 and Figure 4.12) became a problem even

if scale- and rotation-invariant feature descriptors (e.g. SURF) or two-

level matching strategies (i.e. template matching first and then matching a

BRIEF descriptor) [9] were used. The severe rotations of the camera could

not be handled, even by these rotation-invariant descriptors.

• As a result of the previous problem, the state size grew unnecessarily large

during execution. The reason behind this was that the available features in

the map could not produce successful matches, reducing the quality of the

features. After several unsuccessful matches, features started to be deleted

and new features had to be extracted, eventually decreasing the tracking

performance in later frames.
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• It is known that large state size increases the non-linearity of the EKF [250,

251], which performs a linearisation of input and output parameters as de-

scribed in section 2.2.1. Newly added features (due to matching failures of

existing features and addition of these into the state as new ones) unneces-

sarily increased the size of the state. This resulted in a decrease in tracking

accuracy.

• Tests performed in outdoor environments did not produce accurate tracking

results since a larger environment requires more features to achieve tracking.

A sub-mapping approach (e.g. [116]) was not attempted because the tracking

problems were becoming serious soon after execution started, with the filter

failing to converge.

Although these problems were attacked using several methods, which included

using different feature detectors/descriptors, selecting features that are widely

scattered across the image (chapter 3 gives a detailed evaluation on how the distri-

bution of features affects the calculated homography) to calculate homographies,

etc., the implementation could not produce reliable results.
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4.4 Keyframe Based Motion Estimation

Better visual tracking results were achieved by taking a slightly different approach

from the EKF SLAM system presented in the previous section. The new approach

used keyframes to estimate the camera motion using two-view geometry, using a

combination of the methods proposed in [31,252] and [85,253]. Geiger et al. [254]

proposed dense 3D reconstruction and visual odometry, using the approach de-

scribed in [31, 252], for stereo motion estimation and tracking autonomous cars.

This approach also used a KF to refine the initial estimate obtained from the

stereo approach for noise removal.

Instead of taking a direction that uses dense reconstruction as in [254], the

method described here uses keyframes selected following the approach of [85,253]

where Royer et al. used PnP on features detected from the keyframes. The

approach used in this chapter is slightly modified since the original method can

skip too many frames, which would allow the system to miss some important

movements.

The method proposed in this chapter uses keyframes acquired from a single

camera aligned parallel to the direction of motion (as detailed in section 4.4.1).

Features extracted from these keyframes are used to estimate the motion of the

camera using two-view geometry [31]. This motion estimate was applied to the

previous position in order to obtain the new position estimate, a method similar

to dead-reckoning [255] where the current position of the user is deduced based

on the previous position and the motion in between.

Following the approach of [254], a KF was used to refine the visual estimate

initially; however this filtering part was removed later since the vision system was

to be used in conjunction with other sensors (i.e. GPS and IMU) as described
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in chapter 6. Figure 4.13 shows block diagrams outlining the processing steps for

both algorithms.

Acquire 

new frame

 Predict camera motion

Predict feature positions for 

measurement

Perform feature 

matching

Check feature 

quality?

Check feature 

linearity?

Add / delete 

features

Convert inverse depth 

features to Cartesian

No

Yes

Yes

No

Update filter 

state

(a) EKF SLAM (b) Keyframe-based motion estimation

Figure 4.13: EKF SLAM and keyframe-based motion estimation

Details of the motion estimation method will be provided in the following

sections after presenting the assumptions behind the system and an important

challenge due to the alignment of the camera in the following subsection.

4.4.1 Assumptions and challenges

Similar to other vision-based systems, the motion estimation method presented

here depends on the following assumptions:

• Calibrated camera: The intrinsic parameters of the camera (section 4.1)

must be known since projections will use these parameters in order to tri-

angulate features for motion estimation.
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• Static environment: Objects in the surroundings are considered to be non-

moving which is different from the work in [256] where tracking was per-

formed on moving objects.

• Known starting point: The sequence starts from a known location (can be

arbitrary, but should be defined as the starting point) due to the successive

nature of finding position estimates (i.e. dead-reckoning). This does not

imply that a preprocessing step is required for the algorithm to run.

These assumptions describe an environment in which more robust results can

be obtained. Before the keyframe based localization algorithm is explained, it is

important to describe two challenges that were faced during the experiments due

to the alignment of the camera according to the direction of motion, since this

affects the accuracy of the estimation. When the camera is aligned perpendicular

to the motion direction (e.g. the SLAM system in [257]), the disparity of features

in the environment can be better observed, allowing the reconstruction to be

more accurate with smaller projection errors; as a result, the estimation of camera

motion will be better. Furthermore, the alignment of the camera and the direction

of motion also affects the feature matching results since changes in feature scales

will not be the same in different configurations.

It is known that the result of triangulation is more accurate for objects that

are close to the camera [39], as the camera requires little motion to observe these

objects from different viewpoints. For objects that are further ahead, the accuracy

of depth estimation degrades as the distance of the camera to the objects increases.

This situation is illustrated in Figure 4.14 where two configurations are shown in

a scene that includes three objects at different distances from the camera.
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(a) Camera direction is perpendicular to the
direction of motion.
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(b) Directions of camera and motion are par-
allel to each other.

Figure 4.14: Alignment of the camera relative to the direction of motion. Of
the three objects in the scene, the house is the closest object and the star is
the furthest with the tree located between them. Second frames in both figures
show the previous projected positions of the objects to demonstrate the difference.
Notice how the disparities of these objects are changing in their image projections
as the camera moves in different directions.
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In the first configuration (Figure 4.14(a)), the direction of the camera is per-

pendicular to the motion direction. In this case, features from the nearby object

(house) have a larger disparity between the frames. Disparities from the tree are

less significant, and there is no visible disparity in the feature from the star.

The challenge appears when the camera is pointing in the direction of motion

as in Figure 4.14(b). In this configuration, the baseline shortens and it becomes

more difficult to observe parallax, even for nearby objects, and this becomes almost

impossible for objects residing further ahead.

A second challenge of using such a configuration is related to changes in fea-

ture scales. In a horizontal motion (i.e. when the camera is not parallel to the

direction of motion), the scales of features will not change much; rather, the

changes will be in position. However, in a vertical type of motion as shown in

Figure 4.14(b), feature scales will vary greatly. This situation poses a challenge

for the feature descriptors, particularly for their scale-invariance properties men-

tioned in section 2.1.2. For this reason, descriptors that are used in the vision

system should be able to accommodate such great changes in scale.

Despite the two challenges explained above, the second configuration was used

in the experiments, because the images acquired by the camera are not only used

for user tracking but also used as the background scene for the AR applications

presented in chapter 7. A setting with the former configuration would not allow

this using only a single camera.

4.4.2 Extraction of keyframes

When performing localization on a video sequence, it is useful to select a subset

of the frames, a process known as keyframing. In this process, it is important
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to select these keyframes so that the number of feature correspondences between

them is above some threshold, so that the system can estimate the motion correctly

and does not skip any important movement. Keyframing offer the following two

benefits:

• Large baseline: The estimation of 3D structure is not accurate when the

baseline is small (Figure 4.14) i.e. there is not enough motion between the

keyframes.

• Performance: The complete algorithm is run on a smaller set of images

(using 40–60% of the frames in this case) instead of the complete sequence.

The keyframing approach described in the following paragraph is based on [85,

253]. In addition to their method, an extra heuristic was used to prevent skipping

too many frames as this may result in missing any sudden motion that may have

lasted for just a few frames.

The first image acquired by the camera, frame0, is always selected as the first

keyframe (keyframe0). For the following frames, a set of feature correspondences

were computed between the last keyframe keyframen and each of following frames

framei. Spurious matches are eliminated from this set using RANSAC. When

the number of these correspondences falls below a threshold (t = 400, found

experimentally), a new keyframe is extracted as keyframen+1. This selection

mechanism is illustrated in Figure 4.15.
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Frame 0 Frame n-1Frame 3Frame 2Frame 1 Frame n

Keyframe 0 Keyframe 1 Keyframe n

Frame 0 Frame n-1Frame 3Frame 2Frame 1 Frame n

Each frame is matched with the most recent keyframe.
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Figure 4.15: Selecting keyframes based on image correspondences. Coloured cir-
cles represent feature correspondences between frames acquired by the camera
and the most recent keyframe. When the number of these correspondences fall
below a threshold, a new keyframe is extracted and used for motion estimation.
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After each keyframe is extracted, the number of skipped frames is counted,

allowing at most 3 frames to be skipped.

This method of extracting keyframes uses 40% – 60% of the frames, allowing

better speed performance and providing a large enough baseline for the motion es-

timation. The next steps include finding possible solutions for the transformation

between the most recent two keyframes and then selecting the most appropriate

one.

4.4.3 Finding possible solutions

The localization of the camera is performed by using the essential matrix instead

of using the fundamental matrix, making use of the calibration parameters [53]

found in section 4.1 and follows the two-view geometry approach described in [31].

This method finds the camera motion parameters camera motion parameters R

and t as shown in Figure 4.16.
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C
C

Next Keyframe

P=[I|0] P=[R|t]

R, t

Keyframe i-1 Keyframe i

Figure 4.16: Motion parameters for camera
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When a keyframe keyframei is obtained, it is then used to calculate the motion

of the camera since the previous keyframe keyframei−1. For this purpose, first the

feature point correspondences between these two keyframes are obtained from the

correspondences that were already calculated to extract the most recent keyframe

using the algorithm of section 4.4.2.

These correspondences have a normalizing transformation [258] applied to

them, which is obtained by first calculating the translation which moves the points

around origin and then applying a scaling transformation so that the mean dis-

tance of points to the origin (0, 0) will be
√

2. This transformation is given as

Tnorm =


st 0 −stx̄

0 st −stȳ

0 0 1

 (4.22)

where st is the scaling parameter which is calculated using the distances of features

to the origin while x̄ and ȳ are the coordinate averages. This transformation is

applied to the features in both keyframei and keyframei−1. This normalizing

transformation is an important step since it affects the conditioning of the matrices

used in calculating the fundamental matrix [31]. The transformation is calculated

separately for both of the keyframe features (shown earlier in Figure 3.2) and it

can be seen that a more uniform distribution of the features is obtained as a result

of the transformation as shown in Figure 4.17.
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(a) Feature locations from Image 1
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(b) Normalized coordinates for Image 1
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(c) Feature locations from Image 2
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(d) Normalized coordinates for Image 2

Figure 4.17: Effect of normalizing feature positions that were extracted in Fig-
ure 3.2. It can be seen that features are distributed more uniformly after normal-
ization.
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It is also interesting to see how the results of a normalizing transformation are

in line with the evaluation presented in chapter 3 of this thesis.

Following this normalization, the fundamental matrix F , which defines the

two-view geometry, was calculated using these normalized coordinates. The cal-

culated fundamental matrix was denormalized using

Fdenorm = TiFTi−1 (4.23)

where Ti−1 and Ti are the normalizing transformations for keyframes i − 1 and i

respectively.

Before calculating the essential matrix [252] E, it is important to make sure

that F satisfies the rank-2 constraint (F having zero determinant) since this mo-

tion estimate is sensitive to noise from small motion and feature points that yield

a degenerate surface e.g. a plane in 3D [259]. This is done (following the approach

described in [259]) by first calculating the SVD of F as F = USV T . The next

step is setting the last element of S matrix (i.e. S3,3) to 0. Finally, F is recreated

using the multiplication of this modified S: USV T .

When the camera calibration K (described in section 4.1) is known, the essen-

tial matrix E can be calculated from the fundamental matrix [31] using

E = KTFK (4.24)

Using E, the motion parameters can be obtained up to scale and with some

uncertainty using the approach described in [31]. This will result in more robust

computations [53] due to known camera calibration. The uncertainty arises from

the existence of four possible solutions for R and t. These solutions indicate four
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possibilities in which the position of features differ relative to the camera position.

For this purpose, the following two matrices known as Hartley matrices [31]

are defined as

W =


0 −1 0

1 0 0

0 0 1

 Z =


0 1 0

−1 0 0

0 0 0

 (4.25)

where W is an orthogonal matrix (W TW = I) and Z is a skew-symmetric matrix

(ZT = −Z). These two matrices will be used to calculate solutions for the camera

motion parameters. For this purpose, first the SVD of E is calculated

E = USV T (4.26)

Then, the following intermediate matrices are calculated using the matrices of

(4.25) with U and V orthogonal matrices obtained from (4.26)

T = UZUT R1 = UWV T R2 = UW TV T (4.27)

For R1 and R2, the determinant is made positive [260]

if |R1| < 0 then R1 = −R1

if |R2| < 0 then R2 = −R2

(4.28)

Then, a vector t′ is created using elements of the T matrix given in (4.27)

t′ =


T2,1

T0,2

T1,0

 (4.29)
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Now, the four solutions can be obtained as

P0 = [R1 | t′]

P1 = [R1 | −t′]

P2 = [R2 | t′]

P3 = [R2 | −t′]

(4.30)

One of these four solutions will be selected as the motion estimate between

the most recent two keyframes; the most appropriate one is found by creating a

3D reconstruction of the feature points and then projecting them onto the images

using the projection matrices constructed with these motion parameters (R and

t).

Figure 4.18 shows a visualization of the four solutions obtained from (4.30)

along with the triangulated points calculated as described in section 4.4.4.
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(a) P0 = [R1 | t′] (b) P1 = [R1 | −t′]

(c) P2 = [R2 | t′] (d) P3 = [R2 | −t′]

Figure 4.18: Four solutions and triangulation results given in (4.30) following [31].
Blue circle indicates the initial camera position given with PI = [I | 0] and red
circle shows the new position and orientation of the camera (PT = [R | t]). Note
that (a) and (b) does not have any triangulated points due to the new orientation
of the camera while (c) and (d) shows triangulated points. The solution of (c) will
be selected as the motion estimate since it has the largest number of 3D inliers.
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4.4.4 Triangulation of features

The feature points are reconstructed in 3D by triangulation using the method

presented in [261]. The method triangulates a feature point using two cam-

era matrices, PI and PT , where the former defines the origin for the motion

(for keyframei−1) whereas the latter uses the motion parameters of (4.30) for

keyframei:

PI = K [I | 0] (4.31)

and

PT = K [R | t] (4.32)

where K is the calibration matrix created using the parameters from the process

explained in section 4.1.

The initial camera matrix is assumed to be PI = [I | 0] and the motion calcu-

lated using the solutions above is relative to this initial point. The next thing to

do is to decide on the motion defined by PT as illustrated in Figure 4.18.

An image point is triangulated, using the linear triangulation method of [31],

as follows: First the two projection matrices PI and PT are created so that the

camera calibration is incorporated in the projection matrices. Then each feature

is triangulated by creating the following matrix for j ∈ (0, 1, 2, 3) following the

approach of [254]:

J =


PI [2, j]fI1x − PI [0, j]

PI [2, j]fI1y − PI [1, j]

PT [2, j]fI2x − PT [0, j]

PT [2, j]fI2y − PT [1, j]


(4.33)

In (4.33), fI1x , fI1y and fI2x , fI2y correspond to the image positions for a feature
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f in images 1 and 2 respectively. PI [i, j] and PT [i, j] correspond to the element

in cell [i, j] of the related projection matrix.

The SVD of J matrix is calculated

J = USV T (4.34)

and 3D position of the triangulated feature (represented by X) is obtained from

the last column of V :

X =


V [0, 3]

V [1, 3]

V [2, 3]

V [3, 3]


(4.35)

Once the image points are triangulated between the two views, these 3D points

can be used to select one of the solutions produced above. This is done by pro-

jecting the 3D points and checking whether they are in front of the camera in

both views (PI and PT ) or not as follows. The projection of X is calculated in

both views:

xPI = PIX

xPT = PTX
(4.36)

This projection is then checked to determine whether the z coordinate is positive

relative to the cameras:

xPI [2, 0] X[3, 0] > 0

xPT [2, 0] X[3, 0] > 0
(4.37)

The logic in (4.37) finds 3D inliers by checking whether a feature has a positive

depth relative to the camera (i.e. in front of the camera). The solution resulting

in the largest number of inliers is selected as R and t for the final motion estimate.
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From the solutions given in Figure 4.18, it can be seen that P2 has the largest

number of 3D inliers so this solution is selected as the estimated transformation.

Projections of the triangulated points have an mean error of 0.20 pixels on both

images.

4.4.5 Final motion estimate

The translation parameters can directly be obtained from t from the selected

solution but in order to extract rotations about x, y and z axes from the rotation

matrix R, Rodrigues’ formula [262] was used. According to this, R[ij] is the

corresponding index of the rotation matrix and the rotations are calculated using

Ry = sin−1(R[0, 2])

Rx = sin−1(−R[1, 2])/ cosRy

Rz = sin−1(−R[0, 1])/ cosRy

(4.38)

From these found transformations, a transformation matrix is formed as

Tr =


cosRy cosRz − cosRy sinRz sinRy tx

sinRx sinRy cosRz + cosRx sinRz − sinRx sinRy sinRz + cosRx cosRz − sinRx cosRy ty

− cosRx sinRy cosRz + sinRx sinRz cosRx sinRy sinRz + sinRx cosRz cosRx cosRy tz

0 0 0 1


(4.39)

This transformation is then applied to the last position of the camera stored in

homogeneous coordinates. This approach is similar to dead-reckoning [255], where

the final position is calculating by adding the estimated displacement to the last

known position.

As mentioned earlier, a filtering process using KF was used before this trans-

formation matrix was created in order to refine the obtained estimate. This part
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was removed from the implementation since this result will be combined with re-

sults from other sensors in chapter 6. The results are presented in the following

section.

4.5 Results

This section presents results for the developed keyframe-based motion estimation

method. Figure 4.19 presents the trajectory results for the first 500 frames of

a video sequence in which the user, wearing a camera-attached helmet, walks

initially in a straight line and then, turns left near the end of the trajectory. Two

descriptors (SURF and ORB, mentioned in section 2.1.2) are used for feature

detection and description mainly due to their real-time performance. (ORB is a

little faster than SURF.)

From the results, it can be seen that SURF resulted in a better estimation of

the motion than ORB since the latter could not estimate the motion in z direction

(the direction in which the camera is pointing). It is suspected that this is because

the scale invariance of SURF is superior to that of ORB.

Figure 4.20 shows the estimated trajectory of the user on a curved path. It

can be seen that ORB is performing relatively better than for the previous dataset

since the motion has a horizontal component as well as a vertical one. A jump in

the position can be seen in Figure 4.20(c): ORB is failing to estimate the motion

correctly.
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(a) Ground truth for the straight path

(b) SURF path (c) ORB path

Figure 4.19: Camera trajectories using SURF and ORB for a camera moving on
a straight path and turning to left at the end. ORB fails to estimate the motion
in z direction.



CHAPTER 4. VISION BASED USER TRACKING 157

(a) Ground truth for the curved path

(b) SURF path (c) ORB path

Figure 4.20: Camera trajectories using SURF and ORB for a camera moving on a
curved path. Note the increase in error in later frames due to error accumulation
shown by longer blue lines.
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A second important thing to mention in the results for the curved sequence

(Figure 4.20) is the increasing distance between estimated positions, even though

the speed of the user was constant during the experiment. This is due to the

accumulation of errors in the dead-reckoning approach used and is clearly visible

in later frames of the sequence.

By looking at the re-projection errors for the first 100 keyframes extracted

from the straight path sequence (shown in Figures 4.21 and 4.22), it can be seen

that SURF performed better than ORB. SURF has a mean error of less than 0.15

pixels for the sequence, whereas this error for ORB exceeded 1 pixel for some of

the frames; its mean error is about 0.5 pixels.

For the curved path sequence, SURF results in a larger projection error. This

is less than 2 pixels on average but can go up to 12 pixels (Figure 4.23). ORB

results exhibit a lower projection error (less than one on average, as shown in

Figure 4.24) until the large position jump (Figure 4.20(c)). After this point the

error for ORB goes up to 335.84 pixels.
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(a) Projection using Pinit = [I | 0]
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(b) Projection using Pnew = [R | t]

Figure 4.21: Re-projection errors for SURF for the straight dataset through the
first 100 keyframes
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(a) Projection using Pinit = [I | 0]
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(b) Projection using Pnew = [R | t]

Figure 4.22: Re-projection errors for ORB for the straight dataset through the
first 100 keyframes
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(a) Projection using Pinit = [I | 0]
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(b) Projection using Pnew = [R | t]

Figure 4.23: Re-projection errors for SURF for the curved dataset through the
first 100 keyframes
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(a) Projection using Pinit = [I | 0]
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(b) Projection using Pnew = [R | t]

Figure 4.24: Re-projection errors for ORB for the curved dataset through the first
100 keyframes
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4.6 Remarks

This chapter examined vision-based methods for estimating the motion of a walk-

ing user. The discussion started with camera calibration, finding the intrinsic

parameters of a camera using a sequence of images of a calibration grid taken

when moving the grid in front of the camera. The parameters found by this

calibration process are used to model the camera.

The discussion continued with filtering methods namely, KF and PF, which

are used for state estimation problems. An example application of tracking a

virtual user walking along a sinusoidal path was provided in order to visualize

their operation and eventually provide a comparison of them.

A SLAM implementation using EKF was analysed for tracking a user in an

outdoor environment. Details of the processing steps were given and experimen-

tal results were presented. This method was accurate in tracking the motion as

long as feature matches were correct and the motion was slow. However, when the

camera performs erratic motions, such as severe rotations, the method fails due to

data association problems. More problems were faced used when this implemen-

tation was used in an outdoor environment since the number of features extracted

increased significantly during operation, slowing down the filter performance and

reducing tracking accuracy.

An alternative approach that makes use of two-view geometry was presented

for estimating the motion of the user. The discussion started by examining the

assumptions behind this approach and the challenges related to the position of

the camera in relation to the direction of motion. The proposed approach used

keyframes extracted by a simple algorithm and estimated the motion between the

most recent keyframes. This motion estimate is then applied in the form of a
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transformation to the most recent position of the user, as in dead-reckoning.

The use of two different feature descriptors (SURF and ORB) were compared

in terms of tracking accuracy. It was observed that SURF was better in motion

estimation with two datasets captured outdoors. ORB missed some of the for-

ward movements but performed better in the case where the motion also had a

horizontal component. Overall, the estimate obtained by the SURF descriptor

was found to be closer to the actual motion. The trade-off introduced with the

SURF descriptor is the additional computational expense.

It was also found that the accumulation of errors caused inaccuracies in track-

ing in later frames, a consequence of the dead-reckoning approach followed.

The problems related to speed performance and error accumulation are tackled

in chapter 6 by employing additional sensors in a multi-threaded approach in order

to provide a more accurate motion estimate.

The next chapter examines the use of the Kinect sensor for user tracking and

object detection in indoor environments, again using vision-based approaches.

These are somewhat different from those described in this chapter since they are

intended for indoor environments where the large baseline requirement for the

localization algorithm would not be easily satisfied.



CHAPTER 5

VISION WITH DEPTH SENSOR

The vision-based motion estimation approach presented in the previous chapter

requires a large baseline in order to estimate the depth of feature points accurately

and hence identify the motion of a user. Indoor environments are not usually

suitable for obtaining such a large baseline, especially for cases when the user is

mostly standing or making small movements.

Microsoft’s RGB–depth sensor Kinect [263] provides depth (range using IR

light) information along with the RGB image which can be used to generate a 3D

point cloud as a representation of the environment as shown in Figure 5.1.

Although point clouds are useful in presenting the 3D structure of the sur-

rounding, handling large numbers of points is not efficient in terms of time and

space complexity. Often, a higher level geometry, e.g. a plane, is a better descrip-

tion of the environment. For this reason, planar structures from point clouds

have been used in different application types such as robot navigation [196],

165
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(a) RGB image (b) Depth image

Figure 5.1: RGB and depth images from Kinect. In (b), objects closer to the
sensor are shown with a brighter yellow while the colour becomes darker for the
objects away from the sensor.

AR [148,264] or hybrid rendering [265].

A second advantage offered by using planes is that they can be stored and

handled easily, using only four parameters per plane rather than storing hundreds

of thousands of point features. RANSAC [71] is well known to be successful at

finding planes from 2D or 3D point sets/clouds. A RANSAC based algorithm

for finding 3D primitive objects from large point clouds is presented in [266]. A

modification of this algorithm is used to extract planar features obtained from

a laser scanner in [267]. A second method for finding planes is the 3D Hough

Transform which has been recently applied for depth data from Kinect in [268]

where a random point was used with two other points selected from the first

point’s circular boundary.

With Kinect it is also possible to extract the pose of the camera using the PnP

methods described in section 2.1.3. This pose can be used as the viewpoint for the

virtual camera which will be used for rendering synthetic objects over real-world

objects for an in situ AR algorithm.
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Estimation of the camera pose in 3D is a widely-studied research topic [25,

31, 78] (see section 2.1.3), normally obtained using vision-only methods such as

the PnP solution, which aims to recover camera pose using the positions of 3D

features and their projections. For instance, Tam et al. [269] used OpenCV’s PnP

functionality for real-time AR: In a preliminary (off-line) phase, a map of features

was first created from known 3D positions in the real world, with each point being

described by a SURF descriptor [58]. Subsequently, an on-line system matched

SURF features from the camera to those of the map, and then the camera pose

was calculated. The time taken for calculating and matching SURF features is

significant, so this had to be performed on a Graphical Processing Unit (GPU).

Sensing the colour and depth of a scene concurrently with Kinect allows ex-

tracting the 3D structure of the surrounding and creating a representation of the

environment. The use of Kinect data with the PnP algorithm has also been in-

vestigated [270] for image-based registration. The analysis involved determining

relative and absolute accuracies of the Kinect and another sensor according to the

camera pose obtained from the E-PnP algorithm [89].

Using these features of Kinect, the chapter investigates two approaches of

detecting planar objects in the scene and finding camera pose again using scene

features. The discussion starts by explaining the importance of calibrating the

Kinect in order to align the RGB and depth images from its sensors in section 5.1.

Then, section 5.2 describes a simple sequential algorithm which extracts pla-

nar features only from the depth data by trying to define a plane using a random

selection of 3D points, defining a plane and finding the maximal number of points

that are lying on this plane as a support for the extracted plane. Later, an ap-

proach using several threads in order to find planes concurrently will be described

for modifying the initial algorithm in order to utilise the hardware resources in a
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better way and reducing the runtime.

The discussion is continued in section 5.3 by describing a method for storing

3D–2D point correspondences efficiently using a simple data structure. These

correspondences are also used with a recent PnP solution in order to find the

pose of the camera. A KF is then used to refine the initial position estimate of

the camera since the noise from the IR sensor manifests itself as “jittering” in

the output. Having found the camera pose that will be used as the viewpoint

for an AR application (presented in chapter 7), the next step is finding a method

for extracting rectangular structures satisfying some conditions (e.g. aspect ratio,

etc.). These detected rectangles are tracked using a PF in order to provide stability

in the application mentioned. Then, the results for this approach will be presented.

The last experimental work presented in this chapter is on human skeleton

tracking features of Kinect in section 5.4, which will be used to track certain body

joints for another interesting AR application presented later in the thesis.

Finally, the chapter will be concluded in section 5.5.

5.1 Sensor Calibration

Conventional camera calibration, described in section 4.1, focuses on the calibra-

tion of a single camera in order to find its intrinsic parameters (e.g. focal length,

optical centre, etc.). Some of these parameters (e.g. distortions) model the im-

purities/inaccuracies in the manufacturing process of the camera lens. Similar

problems can also be seen in the IR sensor of Kinect (see Figure 2.2). In addition

to finding the internal parameters for Kinect’s both RGB and depth sensors, the

distance between these two is an additional parameter to consider. All these pa-

rameters result in different projected locations in the RGB and the depth images
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for the same 3D point, as shown in Figure 5.2.

Figure 5.2: Projection differences introduced by the calibration parameters. Green
points show the selected pixel position from the depth image. Red and blue points
show the projections when the radial and tangential distortions are ignored and
considered respectively.

The projection of depth data into world coordinates and re-projection from

world coordinates onto the RGB image requires the calibration parameters of

both sensors in advance if errors are to be minimized [271]. These calibration

parameters can be computed either using the Kinect Calibration Toolbox [37] or

obtained using a method [38] similar to stereo calibration [39]. The first method

provides a semi-automatic way of calibrating the device, by allowing the user

to select corners manually from a calibration target (e.g. chess-board pattern

in Figure 4.2) in the RGB image and the plane where the calibration target is

placed in the depth image. These selections are used as an initial guess for the

calibration parameters for a set of RGB and depth images (∼ 30 images). A
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non-linear minimization method is then used to reduce the projection errors.

This work uses the calibration parameters found by the second method [38]. It

again finds corners on the calibration target and performs the calibration, but only

for the RGB camera. The depth camera is then calibrated by manually finding

the corners in the depth image. The values for these calibration parameters and

transformation matrices are given in Table 5.1.

Table 5.1: Calibration parameters for Kinect

x y

Focal length
RGB 529.22 525.56
Depth 594.21 591.04

Principal point
RGB 328.94 267.48
Depth 393.31 242.74

k1 k2 k3

Radial coefficients
RGB 0.26452 -0.83990 0.91192
Depth 0.26386 0.99967 -1.30540

p1 p2

Tangential coefficients
RGB -1.9922 ×10−3 1.4372×10−3

Depth -7.6276×10−4 5.0350×10−4

The calibration parameters are used to construct the camera matrices KD

and KC for the depth and RGB sensors respectively as well as the distortion

coefficients vector dcC:

KD =


fxD 0 cxD

0 fyD cyD

0 0 1

 KC =


fxC 0 cxC

0 fyC cyC

0 0 1

 (5.1)

dcC =
[
k1 k2 p1 p2 k3

]
(5.2)
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where fx and fy are the focal lengths in the x and y directions and cx and cy are

the centre coordinates of the relevant sensor. k1, k2, k3 are the coefficients for

radial distortion and p1, p2 are the tangential distortion parameters.

Transformations (R and T in (5.3) and (5.4)) between the depth and RGB

sensors of the Kinect are used to align the outputs of two sensors and are obtained

as calibration results.

R =


9.9985× 10−1 1.2635× 10−3 −1.7487× 10−2

−1.4779× 10−3 9.9992× 10−1 −1.2251× 10−2

1.7470× 10−2 1.2275× 10−2 9.9977× 10−1

 (5.3)

T =


1.9985× 10−2

−7.4424× 10−4

−1.0917× 10−2

 (5.4)

The intrinsic parameters, distortion coefficients and the transformations will

be used to obtain 3D points from raw depth values in the depth image from Kinect

for finding planar objects in the following sections.

5.2 Plane Extraction Using Depth Sensor

It was mentioned earlier in the chapter, that a higher level structure such as a

plane is usually a better description of the environment than a point cloud [10].

Initially, finding and extracting 3D planar features using the depth sensor seemed

promising for the in situ augmentation application described in chapter 7.

Instead of using the 3D Hough Transform [268], the approach presented here

uses the explicit definition of a 3D plane [272] obtained from a triplet of points,
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p0, p1 and p2) lying on a plane, as shown in Figure 5.3.

Figure 5.3: Parameters for the explicit definition of a plane. The definition uses
the normal vector n and the distance parameter d. Three main points (p0, p1

and p2) are used to define these parameters.

This definition uses one point on the plane (p0), the normal vector (n) to the

plane which indicates plane’s direction and the distance parameter (d) that lies

along the normal vector and denotes the minimum distance of the plane to the

origin (O). The normal vector is calculated as

n = (p1 − p0)× (p2 − p0) (5.5)

A plane can then be defined using any of the points from the triplet, for

example

p0.n + d = 0 (5.6)

The main assumption of this procedure is that the points are neither coincident

nor collinear which must be checked for the selected triplets as will be described

later.

Given a depth image of 640 × 480 pixels and the corresponding RGB image
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of the same size (as in Figure 5.1), the plane extraction algorithm first finds the

world coordinates from the depth data and creates a list of 3D points. This

list is then given to the plane extraction algorithm in which each valid triplet is

examined to determine whether they can define a plane. (The validity of a triplet

will be discussed later in the chapter.) Once a plane is found, it is added to a list

of planes which will be the output of the algorithm. The process is outlined in

Algorithm 2.

Algorithm 2 Plane extraction

Require: The list of 3D points in world coordinates P
Π← ∅, the list of extracted planes
〈p0,p1,p2〉 ← rand(P ), find a triplet from P
Cπ ← 〈p0,p1,p2〉, generate a candidate plane from the triplet
if Cπ ∼ πi in Π then

Discard Cπ, a similar plane already exists
else

if |Cπ| ≥ τ then
Π← Cπ

⋃
Π, add the candidate plane to the list

else
Discard Cπ, could not satisfy min # of points

end if
end if
return Π

After extracting planes, they can be projected on the RGB image along with

the list of points used to extract them. Details of the processing steps are presented

in the following subsections.

5.2.1 Finding world coordinates from a depth image

Kinect returns an RGB image along with a depth image which are not perfectly

aligned due to the disparity between the sensors as mentioned in section 5.1. In

order to find correspondences, first the values from the depth image must be back-
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projected into 3D coordinates and then projected onto the RGB image. Figure 5.4

illustrates this process.

Figure 5.4: Back-projection of depth data and projecting 3D points; shaded values
(red) in the depth data show unreliable raw disparities.

Given raw depth (d) values from the depth image captured by the Kinect, the

world coordinates of a 3D point (p ≡ (px,py,pz)
T ) are calculated using

px = (xcxD)
dm
fxD

py = (ycyD)
dm
fyD

pz = dm

(5.7)

where x and y denote a position in the depth data. dm is obtained using a

conversion from raw depth values (d) to depth in metres due to [273], which is
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required because R (5.3) and T (5.4) are defined in metres, calculated as:

dm = 0.1236× tan

(
d

2842.5
+ 1.1863

)
(5.8)

The depth image returned by Kinect may sometimes include unreliable values

(those having the maximum raw disparity value of 2047 [270], as illustrated in

Figure 5.4) due to reflections from corners, transparent surfaces or simply dis-

tances beyond the sensor’s range. Such values are discarded from the list and the

remainder stored. This list of 3D points will be provided to the plane extraction

algorithm.

5.2.2 Extraction of planes

From the list of points obtained by back-projecting depth values, the main points

(i.e. the points that will form the triplet to define a plane, 〈p0,p1,p2〉) are

selected randomly. Using this triplet, two important checks are performed in

order to decide on their validity for creating a plane according to the assumptions

behind the explicit definition, which is their non-coincidence and non-collinearity,

as mentioned earlier.

The first check is to determine whether or not the triplet has been used before

to create a plane; as this may be the case even though the probability of selecting

3 points from a list of ∼ 300, 000 points is quite low. This part is efficiently

implemented using a map of these triplets in which used ones are marked.

Second and more importantly, the assumptions for plane definition are checked.

One of these assumptions is the distinctiveness, non-coincidence, of the 3 main

points which is easily handled by checking their indices. The second assumption

is the non-collinearity of main points. This is controlled by checking whether the
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magnitude of the cross product of the vectors (p1 − p0) and (p2 − p0) is zero or

not. A magnitude of zero suggests that the points lie on the same line and hence

cannot define a plane.

Once a triplet satisfying these conditions is found, then a plane is created

using them. This candidate plane is checked against previously found planes for

similarity. This operation is required because the algorithm can find two planes

on the same set of points with their normal vectors facing opposite directions or

several planes with the same plane parameters found by different triplets lying on

that plane.

The normal vector of a plane is checked for parallelism against the set of

previous planes. For two planes (P1, P2), we say that the planes are parallel if the

angle θ between their normal vectors (n1, n2) is 0 or π where

θ = cos−1
(

n1.n2

‖ n1 ‖‖ n2 ‖

)
(5.9)

The new plane is rejected if a similar (parallel) plane is found in the set.

A final check is performed in order to obtain significantly larger planes. For

this purpose, a list of 3D points is stored along with the plane’s minimal definition

(i.e. using d, n). When a point satisfies the plane equations it is added to this list

and a plane should have a considerable number of points (τ ≥ 500) to be accepted

as a valid plane otherwise it will be rejected.

5.2.3 Re-projection

After the list of planes is found from the 3D point data obtained from Kinect’s

depth sensor, these planes are projected onto the RGB image for display using

the transformation and distortion parameters for the Kinect sensor described in
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section 5.1. For a 3D point p, first the transformation parameters (R and T) are

applied to p to find p′ ≡ (p′x, p
′
y, p
′
z)
T :

p′ = Rp + T (5.10)

from which the projected coordinates (p′x, p
′
y) are calculated (p′z is ignored since

the point is in image coordinates) using

p′x = p′x
p′z

p′y =
p′y
p′z

p′z = p′z
p′z

= 1

(5.11)

The radial (k1, k2, k3) and tangential (p1, p2) distortion parameters of the

RGB camera are applied to get p′′ ≡ (p′′x, p
′′
y)
T :

p′′x = p′x
(
1 + k1r

2 + k2r
4 + k3r

6
)

+ 2p1p
′
xp
′
y + p2

(
r2 + 2p′x

2
)

p′′y = p′y
(
1 + k1r

2 + k2r
4 + k3r

6
)

+ p1

(
r2 + 2p′y

2
)

+ 2p2p
′
xp
′
y

(5.12)

where r =
√
p′x

2 + p′y
2. Finally, the pixel locations are obtained using the camera

matrix KC:

p′′′ =

 p′′′x

p′′′y

 = KC

 p′′x

p′′y

 (5.13)

Having described the details of the plane extraction algorithm, the following

section will present a method to improve its performance.
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5.2.4 Performance improvement using parallelism

Algorithm 2 processes a large list of (640× 480 ' 307200, as there can be invalid

depth values from the sensor which are ignored) 3D points, trying all possible

combinations that can define a plane in the 3D space satisfying the minimum

number of points and similarity conditions. Hence, it is difficult to expect a near

real-time performance using this sequential algorithm.

For this reason, OpenMP [274] was used to parallelize the algorithm to achieve

better performance. Initially, a trivial optimization seemed to be using a parallel

for structure for the loops traversing the list of points and performing calculations

in the algorithm. However, it did not produce a satisfactory speed-up.

Following the suggestions in [275], the parallelization strategy was modified

to use a different thread to search for a plane in the dataset. Several threads

were used to search for planes (as shown in Figure 5.5). When several candidate

planes are found, they are checked for similarity using the method in section 5.2.2.

At this stage, if similar planes are found, the planes with the highest number of

points lying on them are selected. This method resulted in a significant speed-up

in execution time.

The results of the sequential algorithm will be presented in the following section

along with the speed-up obtained using parallelism described in this section.

5.2.5 Plane extraction results

The plane extraction algorithm presented in section 5.2 extracts planes given

a depth image. After the planes are found, the points lying on these planes

are projected onto the RGB image. Then, the convex hull of these projected

coordinates is found and displayed along with the plane points. Figure 5.6 shows
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Dataset

Detect and Reject 

Similar Planes

Thread #1 Thread #2 Thread #n

Figure 5.5: The algorithm uses a number of threads to perform a faster search for
planes in the dataset.

the extracted planes for two different depth images.

(a) Dataset 1 (b) Dataset 2

Figure 5.6: Extracted planes from the two datasets

Due to the random selection of triplets in the algorithm and the variations

in the depth data from the Kinect sensor, the extracted planes can differ from

execution to execution. This situation is shown in Figures 5.7(a–b) for the first

and second images of Figure 5.6 respectively.

Initial execution times before adding parallelism are given in Figure 5.8 for
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(a) Different planes extracted (b) Different planes extracted

Figure 5.7: Extraction of different planes from the second dataset due to the
random nature of the plane extraction algorithm

different trials. A minor speed-up is visible by using the rejection of similar planes

as this avoids further calculations to find the set of points lying on the plane.

Improved timing values with parallelism in different parts of the code are given

in Figure 5.9. An average speed-up of 2.3 : 1 is achieved using several threads to

search for planes.
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Figure 5.8: Execution time of the plane extraction algorithm for different trials
using the sequential method in Algorithm 2. The blue points show the execution
times before the rejection mechanism was used. Red points show the speed-
up when rejection is used to eliminate similar planes in order to avoid further
calculations.
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(a) Depth image of 320× 240 pixels
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(b) Depth image of 640× 480 pixels

Figure 5.9: Timing results for different sized images when different number of
threads were used.
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The parallel design presented here provides a good example of using the hard-

ware resources to improve performance following the suggestions given in sec-

tion 2.9. The following section presents an alternative approach which resulted in

better performance for real-time.

5.3 Detecting Features for In Situ Augmenta-

tion

The performance of the plane extraction algorithm described in section 5.2 was far

from real-time, even for a simple application. For this purpose, rather than trying

to extract planar features from a large set of 3D points, the approach described

here used was matching features from the environment in order to track the camera

pose and use simple rectangle detection from the RGB images [11]. The reason

behind this approach is that, irrespective of whether columns are cylindrical or

fluted, their projection in the 2D image will be rectangular, and such shapes are

relatively easy to detect.

5.3.1 Storing 3D–2D correspondences

The 3D points resulting from the back-projection of the depth sensor (section 5.2.1)

and their corresponding projection points (section 5.2.3) are stored in a data struc-

ture once they are calculated. This data structure, shown in Table 5.2, allows the

3D position (p) corresponding to a 2D pixel (p′′′) to be obtained quickly.

Efficiency is important when accessing this map of correspondences since it will

be used for two purposes: estimating camera pose and finding the coordinates of

detected rectangles in 3D.
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Table 5.2: Data structure to store point data

Index Data〈
p′′′x0 , p

′′′
y0

〉
p0〈

p′′′x1 , p
′′′
y1

〉
p1

...
...〈

p′′′xn , p
′′′
yn

〉
pn

5.3.2 Finding camera pose

The camera position must be found relative to the 3D points obtained from the

Kinect sensor, and that is best performed by tracking reliable image features over

several frames. The set of points used for tracking needs to be stable in order to

achieve robust localization of the camera.

To achieve this, the FAST feature detector [55] was used to find features in

the RGB image. This detector produces features that are repeatable [56] and

widely scattered across the image [7], important characteristics if the resulting

homography matrix is to be accurate (see the discussion in section 3.6), and fast

if the system is to operate at video rate. The keypoints obtained from FAST were

described using the BRIEF descriptor [64] (described in section 2.1.2), which is

also known to be robust and operate at video rate. The binary structure of the

BRIEF descriptor allows two descriptors to be matched using XOR instructions,

and is therefore rapid to execute.

After the initial set of features has been obtained, these points are matched

against the features detected in subsequent frames, outliers being rejected using

RANSAC [71]. 3D information for matched points is obtained from the data

structure (Table 5.2) alluded to in the previous subsection. There can be cases

where a pixel position may not have an associated 3D entry in the table, perhaps
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due to reflection of the IR beam or an alignment problem because of the disparity

between the depth sensor and camera; when this happens, the closest 2D point in

the data structure is used and the corresponding depth calculated as the mean of

depths within a 21×21-pixel region.

Algorithms for calculating the position and orientation of the camera are well-

established [276], [78] (see section 2.1.3 for more detail), provided that the intrinsic

parameters (focal length etc.) are known through calibration. Correspondences

between 3D points and their 2D projections are used in order to recover the camera

pose. The corresponding 2D and 3D points stored in Table 5.2 are used to calculate

the camera position using a recent PnP solution known as E-PnP [89], [88] as the

initial estimate.

As discussed in [78] and mentioned in section 2.1.3, PnP solutions are easily

affected by noise, and this manifests itself as an unpleasant jittering of the camera

position and hence rendered imagery. To reduce this, the estimate of the camera

pose is filtered. As will be shown below, a sliding window filter of size 15 reduces

this effect but does not eliminate it, while a KF [93], described in section 4.2.1, was

found to be more effective. The state of this filter comprises the x, y, z coordinates

of the camera position and their velocities Vx, Vy and Vz. Measurements of (x, y, z)

are obtained from the E-PnP algorithm discussed above. The velocities were

initialized to 0.5 units/frame for the three axes, reasonable for a user standing

and observing ancient ruins (i.e., little or no motion). The transition matrix F is
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given as

F =



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(5.14)

At each frame, first the transition matrix F is applied to the current camera

position as the prediction step (∆t is the time passed between two consecutive

frames). Then the measurements for the camera pose calculated using E-PnP are

used to refine this prediction for updating the filter, and the state is used for the

viewpoint of augmentation. It was found that this filter reduced jittering to the

point where it was imperceptible.

5.3.3 Detecting objects for augmentation

After determining the camera pose, the next step is to find planar objects— to be

augmented, in this work, by synthetic column models as shown in the applications

in chapter 7. The approach presented here first finds rectangular features in the

scene using the RGB images instead of the 3D planes (section 5.2). The detected

rectangles were filtered based on their sizes and orientations. Finally, a PF was

used to track the extracted rectangles since some of them could not be detected

in all frames.

For the RGB image, any visual noise was reduced by Gaussian smoothing [277].

Then the Canny edge detector [278] was applied to each of the colour channels

independently. Contours were extracted from the edge images using an approxi-
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mation method [279]; contours that contain four vertices with angles between pairs

of lines joining these vertices close to 90◦ form reliable rectangles as depicted in

Figure 5.10. Small rectangles and rectangles having inappropriate aspect ratios

(vertical columns are required for this application) were rejected.

Figure 5.10: Rectangular features located within an image

The rectangles detected using the method described above tend to disappear

and re-appear from frame to frame due to the changes in lighting conditions. For

this reason, the centres of the rectangles were tracked using the Condensation

algorithm [102] described in section 4.2.2.

The state of the filter is initialized with the centre coordinates of a detected

rectangle and a set of particles were initialized randomly within the 20-pixel radius

of the centre. In the following frames, each time the same rectangle is detected,

the centre coordinates of the newly detected rectangle (still the same rectangle

tracked with small variations in the centre location) are used to update the particle
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weights. The number of particles for the algorithm was selected as N = 50,

which was found to be sufficient (i.e. not causing particle deprivation [94]). At

each frame, the particles are updated using the result of the rectangle detection

algorithm described above, resulting in the centre of the rectangle being tracked

robustly as depicted in Figure 5.11. After the re-sampling update is performed, the

particle with the largest weight is selected both for augmentation and propagation

into the next state.

The 3D position of each rectangle’s centre, tracked by the PF mentioned, will

be retrieved from the map in Table 5.2 and column models will be rendered at

these 3D positions as an interesting AR application in chapter 7.

Figure 5.11: Tracking selected rectangles. Small green circles show the estimates
of their centres whereas the large dark blue circle is the particle with largest
weight.

The complete augmentation algorithm is given in Algorithm 3.
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Algorithm 3 In-situ augmentation

Require: IC : RGB image, ID: Depth image, 3D models for augmentation.
Load models and camera calibration parameters.
Initialize the KF and rendering environment.
for all frames do

if first frame then
Extract the initial set of features for tracking using FAST detector and
BRIEF descriptor.
Find the initial number of rectangles for augmentation, initialize the PF.

else
Compute 3D points from the depth data.
Calculate projections and create the point map.
Find feature matches by detecting, describing and matching features from
the RGB image for the new frame.
Calculate camera pose using E-PnP.
Update the KF for camera pose using measurements and set viewpoint for
augmentation.
Detect rectangular objects.
Update PF.
Retrieve centre coordinates for augmentation.
Render the view.

end if
end for
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5.3.4 Performance of the in-situ augmentation algorithm

The errors in the initial estimation are shown in Figure 5.12. The relative error is

calculated for the initial set of 3D–2D correspondences by re-projecting 3D points

using the estimated translation and rotation for the camera, while the true re-

projection error is calculated using ground truth, obtained from the knowledge

that the camera is stationary. A mean difference of ' 0.26 pixels was obtained

between the true and estimated re-projection errors, showing that the estimation

is reasonably accurate.
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Figure 5.12: Estimated (blue) and true (red) re-projection errors calculated with
E-PnP

Again using the ground truth, the calculated errors in rotation and translation

and are given in Figure 5.13. Calculating the rotation error involves converting the

actual and estimated rotation matrices into quaternions and finding the distance

between the two quaternions. For the translation error, the Euclidean distance
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is calculated between the actual and estimated translations. Fluctuations are

substantially higher for the translational error (σterror = 0.009) compared to the

rotational error (σrerror = 0.0004). As alluded to above, the magnitude of this

translational error results in the rendered augmentation being unstable (‘jitter-

ing’).
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Figure 5.13: Rotational (blue) and translational (red) errors for the camera posi-
tion estimate

Figure 5.14 shows the results from sliding window and Kalman filters, and it is

clear that the Kalman filter produces more stable positions. The jitter is reduced

from σ̄raw = 0.43 to σ̄Kalman = 0.07, where σ̄raw and σ̄Kalman are the standard

deviations of the camera coordinates for the initial estimate and Kalman filtered

results.
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Figure 5.14: Camera coordinate estimations using raw estimation result (blue),
sliding window (red) and Kalman filter (green)
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5.4 Identifying Body Parts

Another interesting application of Kinect is due to its human-skeleton tracking

capabilities which is done by detecting the user in the depth image and then

finding joint positions by inferring the skeleton pose using a decision forest [36]

as explained in section 2.1.1.

The Open Natural Interaction (OpenNI) NITE library [280, 281] processes

depth information from Kinect and performs detection of body parts as shown in

Figure 5.15.

(a) A standing user in the calibration pose—
see discussion in the text

(b) A jumping user

Figure 5.15: User tracking with Kinect

User tracking can be accurately performed if the user is standing in front of the

Kinect sensor (2.5m is given as an ideal distance) with his/her body (the upper

body in particular) inside the FOV and not occluded [281].

In the initialization of the skeleton tracking algorithm, a calibration is auto-

matically performed for improved accuracy in the user position. At this stage,

the user is expected to stand in the calibration pose, referred to as “Psi” (Ψ),

as shown in Figure 5.15(a). Once, the user pose is obtained successfully, then
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each joint’s position and orientation can be retrieved. It is also noted that the

accuracy for joint positions is higher than for orientations [281]. A confidence

value is provided by the library as an indicator of how well the tracking algorithm

is progressing.

From the 31 joints that can be tracked with Kinect, three joints were used in

the thesis: the head, torso and right hand as shown in Figure 5.16.

Figure 5.16: Skeleton joints identified by OpenNI

As each joint is recognized by the library, its position and orientation are

returned. These transformations are absolute, not relative, and so can be used

directly for rendering, with the exception that the rotation matrix for orientation

must be converted to a rotation vector using Rodrigues’ formula given in (4.38).

Sample data for the joint positions mentioned above for a user standing with

some movements in all three dimensions and waving his hand is presented in

Figures 5.17, 5.18 and 5.19. It can be seen that the motion of the user’s body

along Y (up-down) and Z (forward-backward) axes are reflected in all body parts.
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The wave gesture is clear in Figure 5.19 in the X (left-right) axis.
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Figure 5.17: Torso coordinates
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Figure 5.18: Head coordinates
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Figure 5.19: Right-hand coordinates. Note the change in X coordinate of the
hand due to the waving motion
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This skeleton tracking capability will be used for augmenting participants with

a galea (Roman helmet), toga and sword in an AR application in chapter 7.

5.5 Remarks

The use of Microsoft’s Kinect sensor for finding planar features in the environ-

ment and its skeleton tracking features were investigated in this chapter. The

discussion started with calibration process for the Kinect which is required for

both finding the intrinsic parameters of both RGB and depth sensors and finding

the transformation between the two sensors in order to align their output images.

Having found the calibration parameters, an algorithm for extracting planar

features using only data from Kinect’s depth sensor was presented. The algo-

rithm selected three main points randomly in order to define a plane using a

normal vector and a distance parameter (explicit definition). Similar planes (e.g.

planes having parallel normal vectors) are rejected by the algorithm. Then, a

plane is stored if it has a considerable number of points that satisfy its equation.

Projections of the plane points on the RGB image were shown with a convex hull

surrounding them as the resulting planes.

The algorithm tried every possible combination from a large set of 3D points.

While this resulted in finding large planar structures in the environment, ran-

dom search in such an enormous search space resulted in an increased time-cost.

Attempts to use parallelism for searching for planes significantly reduced the exe-

cution time, though the timing was still not satisfactory to be used in an real-time

application.

Another algorithm to overcome this problem was proposed, finding rectan-

gular features considering the shapes of column projections in 2D images. This
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approach first described a method for finding the camera pose using the 3D–2D

correspondences obtained from the Kinect sensor. A special data structure was

defined for storing and retrieving these correspondences efficiently. Later, these

correspondences were used with a recent solution of the PnP problem in order to

get an initial estimate for the camera pose. Due to noise from both sensors of

Kinect, jittering was observed which manifested itself in a shaky output in ren-

dering. This was first tackled by a simple sliding window filter which reduced the

jittering and then completely solved using a KF.

In order to find the actual features in the scene that will be used for in situ

augmentation, a rectangle detection and tracking method was presented. This

approach extracted contours from edge images and then filtered the extracted

rectangles for a specific size and aspect ratio. The 3D coordinates were obtained

from the data structure defined earlier constructed using the depth data from

Kinect. These rectangles were tracked using a PF for additional stability in the

application since they tend to disappear and re-appear in some frames.

Finally, the chapter used human skeleton tracking features of the Kinect sen-

sor and OpenNI NITE library for tracking several joints of users. The results

provided here for both skeleton tracking and finding features in the environment

for augmentation along with finding camera pose has shown how a depth sensor

can facilitate challenging tasks. The approaches described here will be used for

two interesting applications in chapter 7.

Due the brightness and shadows resulting from direct sunlight, it is not always

possible to use Kinect outdoors. For this reason, use of other sensors will be

investigated along with the vision-based motion estimation method of chapter 4

in the following chapter.



CHAPTER 6

FUZZY INTEGRATION OF

MULTIPLE SENSORS

A tracking system that will be used for AR applications has two main require-

ments: accuracy and frame rate (i.e. fps). The first requirement is related to

the performance of the pose estimation algorithm and how accurately the track-

ing system can find the position and orientation of the user in the environment.

Accuracy problems of current tracking devices, considering that they are low-cost

devices rather than the tactical-grade sensors used in military operations, cause

static errors during the motion estimation process. The second requirement is re-

lated to dynamic errors (the end–to–end system delay; see section 2.8) occurring

because of the delay in estimating the motion of the user and displaying images

based on this estimate. It is known that the human visual system can process

8–10 images in a second and current industrial standards for frame rate is between

200
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25 and 30fps [282].

The vision-based user tracking method described in chapter 4 can provide

about four motion estimates in a second which is not fast enough to capture every

important motion the user may have performed. In addition to this, the frame rate

obtained using the vision-based method as the only estimate is not high enough to

provide satisfactory results in the AR application considering the additional time

required for rendering and displaying the models. Finally, this motion estimate

has an increasing error due to the dead-reckoning approach followed.

For the reasons described above, a sensor fusion approach was followed to

provide more accurate estimates of motion more quickly using the high sampling

rates of an IMU and GPS. Integration of data from GPS and IMU sensors has

been well-studied [283] in order to improve upon the robustness of the individual

sensors against a number of problems related to accuracy or drift. The KF is the

most widely-used filter due to its simplicity and computational efficiency [284].

The literature also presents attempts to combine vision with other sensors.

For instance, [210] used stereo cameras with a low-cost GPS receiver in order to

perform vehicle localization. SIFT was used for feature matching in a sub-mapping

approach. Armesto et al. [285] used a fusion of vision and inertial sensors in order

to perform pose estimation for an industrial robot by using the complementary

characteristics of these sensors (see section 2.7.1). GPS position was combined

with visual landmarks (tracked in stereo) in order to obtain a global consistency

in [202]. A similar approach was followed by Agrawal et al. [209] on an expensive

system using four computers. Bleser [198] combined vision-based motion estimates

with IMU in a PF framework for AR in indoor environments. In [286], a similar

approach was followed in order to perform localization for an UAV: vision (a

camera facing downwards) and inertial sensing was used together in a PF for
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position and orientation estimation in 2D. For estimating the altitude, a pressure

sensor was used.

Recently, Oskiper et al. [287] developed a tightly-coupled EKF visual–inertial

tracking system for AR for outdoor environments using a relatively expensive

sensor (XSens, MTi-G, given in section 6.1.3). The system used feature-level

tracking in each frame and measurements from the GPS in order to reduce drift.

In addition to this, a digital elevation map of the environment was used as well

as a pre-built landmark database for tracking in indoor environments where GPS

reception is not available (although it was claimed that no assumption about the

environment was made). The error was found to be 1.16 metres.

Attempts to improve the accuracy of the filtering have also been made using

adaptive approaches. In some studies, values for the state and measurement

covariance matrices were updated based on the innovation [288] and recently fuzzy

logic was used for this task [289,290]. Another approach for fusing accelerometer

and gyroscope for attitude estimation is also based on fuzzy rules [291] in order

to decide which of the accelerometer or the gyroscope will be given weight for

estimation based on observations from these sensors such as whether a mobile

robot is rotating or not. A later approach [292] used the error and dynamic

motion parameters in order to decide which sensor should have a dominant effect

on the estimation.

Some other studies suggest [86] or use [87, 293–295] the idea of employing

different motion models for recognizing the type of the motion for two-view motion

estimation and visual SLAM. Different studies [293–295] used geometric two-view

relations such as general, affine or homography in order to fit these models to a

set of correspondences and using the outliers for obtaining a penalty score in a

Bayesian framework.
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Civera et al. [87] used a bank of EKFs in order to apply different motion

models to several filters concurrently and select the best model in a probabilistic

framework. This approach incorporated 3 motion models, namely stationary,

rotating and general, separating models for motions including translations and

rotations.

The tracking system developed in this chapter takes a different approach by

combining estimates from a camera, a low-cost GPS and a low-cost IMU for

better accuracy in motion estimation. A second novel contribution presented

here is employing fuzzy logic to choose the best-fitting of several possible motion

models, ensuring that the filter state is more consistent with the measurements

and hence converges faster. Furthermore, the design here does not bring additional

computational burden due to the simple design and efficient implementation of

the rule-base.

The rest of the chapter starts by describing the low-cost sensors, GPS and an

IMU, used in the thesis in section 6.1. The working principles of these sensors are

presented as well as the sources of error found in these sensors.

The sensor fusion stage uses motion estimates from three sensors; how these

individual estimates are calculated are described in section 6.2. For the camera

motion estimate, the two-view approach described in chapter 4 is used. The

position estimate for GPS is fairly straightforward since there is a direct conversion

between the reference frames used by the GPS and the coordinate system used

in the thesis. For the estimate from the IMU, a recently developed filter [6]

is employed for obtaining the orientation estimate where conventional double-

integration was used for the position estimate.

Once motion estimates from each sensor are obtained, these estimates are

then fused in a KF framework in order to provide a single output for position and



CHAPTER 6. FUZZY INTEGRATION OF MULTIPLE SENSORS 204

orientation in section 6.3. The design of the filter and use of several threads for

improving its performance are described and then the tracking system itself will

be presented.

The sensor fusion algorithm presented initially used a single motion model,

ignoring any the changes in a user’s motion patterns which will not be constant

during operation. To ameliorate, a multiple motion model approach is proposed

using a fuzzy rule-base defining the transitions between different motion models

in section 6.4.

Tracking results for the developed system will be presented in section 6.5 and

comparisons will be made between conventional GPS–IMU integration and this

sensor fusion approach, which also uses the estimates from the vision-based algo-

rithm. Differences in tracking results when the multiple motion model approach

is used instead of a constant motion model will be presented. Finally, the chapter

will be concluded in section 6.6.

6.1 Sensors

This section presents an overview of the sensors namely GPS and IMU used in

the sensor fusion algorithm presented in this chapter. After presenting the main

principles behind these two sensors, details of the sensors used in the experiments

will be given.

6.1.1 Global positioning system (GPS)

GPS is a satellite network called NAVSTAR which regularly transmits encoded

data, allowing a user to find his or her position on the Earth, to some accu-

racy. The network initially consisted of 24 satellites but now operates with more
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satellites for greater accuracy and increased robustness [284]. GPS is owned by

United States Department of Defense, constantly orbiting the Earth and using

solar power for energy.

For non-military applications of GPS, the accuracy was initially limited to 100

metres however this was dispensed with in 2000. There is still a limitation on

altitude of 60,000 feet (18.29km) and speed of 1,000 knots (1900km/h) in order

to prevent it being used for missile guidance [296]. Positional accuracy typically

varies between 2–20 metres.

The satellites orbit the Earth twice a day and use trilateration [283,297] (sim-

ilar to triangulation but the former uses distances rather than angles) to find the

position of the receiver; a fourth satellite is required to find the position in 3D.

The design of the GPS system (i.e. the number of satellites and their trajectories)

is also based on this constraint so that at least six satellites can be visible from

any user position [284] in order to provide a global coverage, even in cases of single

satellite failure.

Figure 6.1 shows how trilateration works to find the position of a user. Syn-

chronization errors between the receiver and the satellites cause an uncertainty in

the calculated distance. This problem is the main reason behind the inaccurate

positional values from the GPS.

Due to the low-power satellite transmission, the accuracy of GPS is affected by

geographical conditions such as the structure of the terrain. These problems are

related to the satellite visibility (i.e. line of sight) and can occur in deep canyons,

under dense vegetation or tree canopy [75]. A similar problem occurs in urban

environments where the visibility of the satellites are affected by rows of high

buildings, creating a canyon like structure. This problem worsens in rough urban

canyons where the GPS signal is received from a multipath indirect reflection [299].
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Figure 6.1: Trilateration to find position. The object to be located is shown with
the yellow circle. Blue circles indicate the satellites visible by the object. (Top)
Distances from the object to each satellite i are shown with di. (Middle) Two
locations are possible when two satellites are used. (Bottom) The object can be
located within a degree of error when three satellites are used. The error is due
to uncertainty (shown with green areas) of distances arising from synchronization
problems between the receiver and the satellites. Red-dashed region indicates
possible positions of the object. Following [284,298]
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6.1.2 Inertial measurement unit (IMU)

An IMU consists of two individual sensors namely an accelerometer and a gyro-

scope which are used to detect linear accelerations and angular velocities respec-

tively. The device is called a Magnetic, Angular Rate and Gravity sensor (MARG)

when it also includes a compass. The working principles of these two sensors, fab-

ricated as Micro Electro Mechanical System (MEMS) devices, is described below.

Accelerometer

Accelerometers measure acceleration by measuring the force that caused the accel-

eration. Figure 6.2 aims to explain the logic behind accelerometers. Considering

the mechanical design, an external acceleration reflects itself as a force exerted

to the body inside the accelerometer causing it to move in the opposite direction

to the acceleration. This force will compress or stretch the springs holding the

body. In the electrical design the force will push the moving plate so that the

distance between the capacitor will change, eventually altering the voltage of the

capacitor.

Gyroscope

A gyroscope is used to measure orientation. The working principle of a gyroscope

for detecting a change is similar to an accelerometer since it also measures the

voltage changes in capacitors as shown in Figure 6.3. As the base plane rotates,

the object inside the body resonates and as a result of the Coriolis force [301]

which is perpendicular to the centrifugal force, which is indeed a form of inertia

as a tendency to move objects from the centre of a spinning circle, the sensors can

detect the changes in voltage.
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Figure 6.2: Simple diagram of two accelerometer designs. Mechanical design
is shown on the left and the electrical design is shown on the left. When the
accelerometer is subject to an acceleration, this acceleration will cause the body
(red circle) inside it to move with an inertial force in the opposite direction. In
a mechanical design this generated force will compress and stretch the springs
whereas the in the electrical design the body will move one of the plates of the
capacitor changing the voltage. Following [300].
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Figure 6.3: Simple diagram of a gyroscope. The Coriolis force resonates the
inner frame of the sensor and causes the voltages between the fingers to change
depending on the amount of rotation. Following [302,303].

Having described the logic behind accelerometers and gyroscopes, it is impor-

tant to note that current digital sensors do not directly follow the designs shown in

Figures 6.2 and 6.3 mainly due to the space requirements. Instead, semiconductor

chips are used to fabricate them on silicon (MEMS) [304].

Sources of error

There are sources of error which reduce the accuracy of the sensors used in inertial

sensing. The most common of these errors are accelerometer bias and gyroscope

drift. These can be compensated for by finding the parameters through calibra-

tion or from the product specifications and incorporating them into calculations

as will be discussed in Section 6.2.3. Another source of error is related to the tem-

perature [305]. Changes in the IMU temperature affect the bias and drift from

the sensors. Vibrations can also cause noisy readings from the sensors, especially
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during the calibration of the sensor in order to find the bias. To prevent this, it is

essential to place the sensor on a stable surface where there is no vibration from

sources such as a computer.

While the first three sources of error constitute an important concern in the

system presented in the thesis, the temperature is less of a problem. (Though it

can cause problems if the proposed system is to be used in a UAV [306].)

6.1.3 The sensors used in this research

There are many different sensors provided by various companies, as shown in

Table 6.1; pricing changes based on the accuracy or the resolution of the sensor.

Some sensors (e.g. MTi-G, IG500N) include an on-board KF to integrate GPS

data with the estimates from gyroscopes and accelerometers in order to produce

more accurate results. This is another main factor for increased cost.

Table 6.1: GPS and IMU sensors by different vendors

Company Model Price Product

XSens MTi-G ≈£3300

SBG Systems IG500N ≈£3100

DIYDrones ArduIMU+V2, U-Blox5 GPS ≈£65+ ≈£55

Phidgets 1056 Spatial, 1040 GPS ≈£75+ ≈£50

The GPS and IMU boards provided by Phidgets are used in the experiments.

One main reason behind this was that the sensors can be directly used with a
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Universal Serial Bus (USB) interface. Secondly, the sensors were relatively cheap

when compared to those provided by XSens1 or SBG Systems2.

According to the product specifications of GPS in Table 6.2, the 1040 GPS

is specified to be accurate within 2.5 metres in the best case and can deliver 10

samples per second. The sensor also include a rechargeable battery that is used

to store recent positions of the sensor so that it can provide “hot-starts,” though

it may take a few minutes for GPS to start receiving fixes if it has not been used

for a long time.

Table 6.2: Specifications for the Phidgets 1040 GPS [307]

Circular error probable 2.5m
Update rate 10 samples/s

Timing error 300ns
Re-acquisition time 1s

An experiment was performed with the GPS receiver left stationary in an

outdoor environment with 9–11 satellites visible. The variation in the position

acquired by the receiver is presented in Figure 6.4 where it can be seen that the

positional error is, in fact, more than 2.5 metres.

The Phidgets 1056 IMU combines a tri-axis gyroscope, tri-axis accelerometer

and a tri-axis compass (actually making the device a MARG, but the magnetic

field sensor was not used in the system presented here, so the sensor is referred to

as an IMU), on a single board. The product specifications for the IMU is presented

in Table 6.3. The gyroscope can measure changes of 0.02 degrees per second (as

shown in Table 6.3). The drift is 4 degrees per minute. The accelerometer has a

resolution of 2.28 × 10−4g. The board on which these two sensors are mounted

can provide samples every 4 milliseconds (250 samples per second).

1http://www.xsens.com/
2http://www.sbg-systems.com/

http://www.xsens.com/
http://www.sbg-systems.com/
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Figure 6.4: Errors in GPS data. Data is collected from a stationary location with
9–11 satellites visible. For the first plot, the centre is the mean of 600 sample
readings. Points show the distances from the mean. Second plot is displaying the
changes in altitude readings.
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Table 6.3: Specifications for the Phidgets 1056 IMU [308]

Gyroscope
Resolution 0.02◦/s

Drift 4◦/min

Accelerometer
Resolution 228 µg (2.2mm/s2)

Board
Sampling speed 4 ms/sample

An experiment to assess the drift was performed by fixing the IMU on a stable

surface and storing the values from the sensor. The actual drift for the yaw, pitch

and roll parameters was found to be ' 5◦ per minute (while this was specified to

be 4◦/min in Table 6.3) as shown in Figure 6.5.
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Figure 6.5: Gyroscope drift for the yaw, pitch and roll parameters. Actual drift,
calculated when the IMU was left stationary on a stable surface, is found to be
around 5◦ per minute.

These specifications (Tables 6.2 and 6.3) are essential for calculations for ob-
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taining motion estimates for orientation in particular. The two sensors described

here will be used for obtaining motion estimates in the following section.
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6.2 Finding Motion Estimates from Sensors

Before describing the details of the sensor fusion algorithm, this section describes

the methods used to obtain measurements from the camera, GPS and IMU.

6.2.1 Camera motion estimate

Chapter 4 described a vision-based user tracking algorithm providing motion es-

timates obtained using a two-view approach, by calculating the essential matrix

between the most recent two keyframes. The algorithm extracted a new keyframe

based on the number of features matched as described in section 4.4.2. The motion

estimate between the keyframes (section 4.4.3) was in the form of a rotation and

translation which were incorporated into a transformation matrix (Tr of (4.39)).

This transformation matrix was initially applied, following a dead-reckoning

approach, to the last position estimated by the camera in order to obtain the new

position. In the sensor fusion algorithm, this transformation will be applied to

the estimate obtained using GPS and IMU.

6.2.2 GPS position

The data obtained from the Phidgets 1040 GPS is in well-known NMEA for-

mat and includes position, the number of visible satellites and detailed satellite

information for a position P on Earth’s surface, as shown in Figure 6.6.

Using this information, the GPS coordinates can be converted from geodetic

latitude (φ), longitude (λ) and altitude (h) notation to ECEF Cartesian coordi-
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P(x, y, z) = P( h)

Figure 6.6: GPS position parameters in latitude (φ), longitude (λ) and altitude
(h) and x, y and z in ECEF. Following [300].
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nates xgps, ygps and zgps as:

xgps = (N + h) cos(φ) cos(λ)

ygps = (N + h) cos(φ) sin(λ)

zgps = ((1− e2)N + h) sin(φ)

(6.1)

where

N =
a√

1.0− e2 sin(φ)2
(6.2)

and a is the WGS84 [309] ellipsoid constant for equatorial earth radius (6,378,137m),

e2 corresponds to the eccentricity of the earth with a value of 6.69437999 ×

10−3 [284]. The calculated values form the measurements from the GPS sensor as

mgps = (xgps, ygps, zgps).

6.2.3 IMU motion estimate

The IMU is used for both calculating a position estimate that will be combined

with estimates from other sensors and generating the orientation estimate using

a recent IMU filter by Madgwick [6]. Before finding these motion estimates from

this sensor it is important to find noise parameters using a simple calibration stage

described in the following.

Sensor calibration

The Phidgets 1056 IMU used in the experiments is calibrated in the factory in

order to prevent production-related problems such as sensor sensitivity and cross-

axis misalignment. Nevertheless, the sensor generates non-zero values which are

known as bias (offset) parameters at rest. Sensor calibration in this case simply

consists of finding the values which are generated by the IMU while it is still.
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It is performed by placing the IMU on a flat and stable surface (it was ob-

served that even the vibrations from the computer can affect the parameters) and

taking samples (∼ 5000, which takes around 30 seconds). The samples for the

accelerometer (ax, ay, az) and the gyroscope (gx, gy, gz) are accumulated and their

mean is found as the bias for each axis for both sensors. These offsets, presented

in Table 6.4, are then subtracted from each reading to find the actual amount of

acceleration or rate of turn.

Table 6.4: Calibration parameters found for accelerometer and gyroscope

Offsets

x y z
Accelerometer -0.000817 0.158242 0.987314

Gyroscope -0.216527 -0.052387 -0.183611

In addition to finding the bias parameters and subtracting them from the read-

ings, a second approach for reducing the noise is to accumulate a set of readings

(e.g. four readings) and using their mean in order to reduce the effect of noise

in position and orientation estimates from the IMU. Use of these calibration pa-

rameters and averaging several readings reduced the drift to a mean of 0.5◦ per

minute when these parameters were used with the IMU filter described below.

Position and orientation estimates

Finding the position estimate from the IMU is performed by double-integrating

the accelerometer outputs for several samples, the current implementation uses

four samples. The first integration, to find the velocity, involves integrating ac-



CHAPTER 6. FUZZY INTEGRATION OF MULTIPLE SENSORS 219

celerations using v(t) = v(0) + at:

vx =

∫ T

0

axdt = vx(T )− vx(0)

vy =

∫ T

0

aydt = vy(T )− vy(0)

vz =

∫ T

0

azdt = vz(T )− vz(0)

(6.3)

Since multiple samples are taken, dt is the time passed for each one of them.

The next step is to integrate the velocities from (6.3) to find the position using

x(t) = x(0) + vt as

ximu =

∫ T

0

vxdt = px(T )− px(0)

yimu =

∫ T

0

vydt = py(T )− py(0)

zimu =

∫ T

0

vzdt = pz(T )− pz(0)

(6.4)

These calculated positions (mimu = (ximu, yimu, zimu)) are used as the measure-

ments from the IMU, used in both combining estimates from other sensors for the

fusion filter presented in this chapter and a conventional GPS–IMU sensor fusion

developed for comparison–see section 6.5. For the values from accelerometer and

gyroscope in Figures 6.7 and 6.8, the position estimate from the IMU can be seen

in Figure 6.9 below.

The orientation estimate is calculated using the IMU filter due to [6] which

can calculate orientation efficiently both for IMUs and MARGs. This filter uses

the quaternion representation for avoiding problems related to the Euler repre-

sentation such as gimbal lock, which occurs when the pitch is ±90◦ in which case

the heading and roll will rotate around the vertical axis, losing a DoF [310]. This

problem is rather unlikely to occur for tracking system described here since the
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Figure 6.9: IMU estimates for the 3D position

user being tracked is not expected to look upwards but this feature of the Madg-

wick filter provides additional robustness. A gradient descent algorithm was used

by this filter to obtain the final motion estimate by making good use of the high

frequency outputs from inertial sensors [86] rather than performing several itera-

tions.

Using the IMU filter in [6] described above the orientation is converted to

Euler angles for the fusion filter described in section 6.3 and samples values are

presented in Figure 6.10.

6.3 Sensor Fusion Algorithm

The motion estimates obtained by the individual sensors presented in section 6.2

are prone to error due to problems related to accuracy and drift. It makes sense
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Figure 6.10: Yaw, pitch and roll values obtained using the filter of [6]

to combine measurements from several sensors in order to exploit their charac-

teristics, which are complementary to each other (see section 2.7.1), in order to

yield more accurate results. For this reason a sensor fusion approach was followed

using a KF, since it is most common for such applications [284].

The following subsections elaborate on the fusion filter, describing how the

motion estimates from the three sensors are combined in a tightly-coupled design,

the approach making use of multiple threads for efficiency and finally the tracking

system using the sensor fusion algorithm presented here.

6.3.1 Fusion filter

The filter designed for integration of three sensors consists of a state x which

includes positional data (P = (Px, Py, Pz)
T ), linear velocities (V = (Vx, Vy, Vz)

T ),
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rotational data (R = (Rx, Ry, Rz)
T ) and angular velocities (Ω = (Ωx,Ωy,Ωz)

T ):

x = (P, V,R,Ω)T (6.5)

A simple state consisting of 12 elements will facilitate obtaining a better per-

formance in speed than one with a larger state. At each iteration, the predict–

measure–update cycle of the KF is executed in order to produce a single output

from several sensors as the filter output.

In the first stage, i.e. prediction, a transition matrix (F of (6.6)) is applied to

the state x in order to obtain the predicted position:

F =



1 0 0 ∆t 0 0 0 0 0 0 0 0

0 1 0 0 ∆t 0 0 0 0 0 0 0

0 0 1 0 0 ∆t 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 ∆t 0 0

0 0 0 0 0 0 0 1 0 0 ∆t 0

0 0 0 0 0 0 0 0 1 0 0 ∆t

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



(6.6)

where ∆t is the time between two prediction stages. This initial version of the tran-

sition matrix is relatively simple –using Constant Motion Model (CMM) which

will be elaborated later in the chapter; however fuzzy rules, described in sec-
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tion 6.4, will be used to decide on the velocity coefficients that will update this

transition matrix.

The majority of the operations required for integrating the motion estimates

from the three sensors are performed in the second stage, where measurements

are taken and provided to the filter so that it can update itself. This stage

can be examined separately for the position and orientation estimates. For the

latter, the output of the IMU filter (mR = (yaw, pitch, roll) provide the rotational

measurements used to update R in (6.5).

The idea of combining the positional estimates from the camera, GPS and

IMU is due to the fact that the GPS is a discrete-time position sensor [284]. In

order for the AR system used in applications presented in chapter 7 to update

the position of the virtual camera more rapidly, the position estimates from the

fusion filter need to have smooth transitions between them in order to provide the

impression of continuous motion. This is achieved by applying the transformation

Tr, obtained from the motion estimate of the camera, to the position provided by

the GPS sensor (mgps) and then adding the motion estimate of the IMU (mimu)

as an offset:

mP = Tr ×mgps +mimu (6.7)

where mP constitutes the positional measurements for the fusion filter.

Having all the measurements (mP and mR) ready, the filter can now update

itself using the last three lines of the KF (Algorithm 1). After the update, the

obtained estimates can directly be used by the AR system described in chapter 7

in order to update the position of the virtual camera.
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6.3.2 Multi-threaded approach

The sensors used in the system had different data rates for delivering data and

performing calculations to produce a motion estimate. These frequency differ-

ences resulted in a challenge while combining them to generate a single output

for the AR system. To elaborate, the vision-based system can produce up to 4

motion estimates per second while the IMU can produce up to 250 samples per

second which are to be used for the orientation filter and GPS can produce only

a single measurement every second. Furthermore, AR processing has to produce

a minimum of 10fps in order to generate a smooth flow of the display.

A second challenge is due to the execution method of the GPS and the IMU

sensors. The library handling these sensors was designed to be event-driven (i.e.

an event is triggered each time a datum is available.). The library makes an

automatic call the related event handler when data from any of these two sensors

become ready. This did not allow the handling of these sensors in the same thread,

where other computations are performed in a procedural manner.

Due to the differences in data rates and the application logic used for the

sensors employed in the system, a multi-threaded approach was followed as shown

in Figure 6.11. The design used two child threads in addition to the main thread

in order to circumvent the challenges mentioned above. The main thread is used

to acquire camera images and pass these to both of the vision-based method as

keyframes and AR processing. A child thread is used to handle vision-based

processing by accessing the camera images acquired. The algorithm generates

an estimate which will be later used by the fusion filter in the main thread. A

second child thread handles the GPS and IMU sensors and computes the estimate

generated by them.
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Figure 6.11: Diagram of using multiple threads to access data from different
sensors. The main thread is responsible for acquiring camera images, the fusion
filter and using these two generating the AR output. The GPS and IMU handler
is handled by a child thread since it is working based on events generated by these
two sensors. The second child thread is responsible for the vision algorithm. Race
conditions are prevented using three MutExes (shown with locks).
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When the child threads have an estimate, they are joined at the fusion filter

running in the main thread. The fusion filter produces a single final estimate of

position and orientation which will be used as the viewpoint parameters for AR

processing along with the image acquired by the camera.

It is also worth mentioning that the design here followed a producer-consumer

approach. The child threads are mainly responsible for producing the posi-

tion/orientation estimate, while the fusion filter consumes these estimates. In

order to prevent corruption of data in shared locations (e.g. the camera image

or values storing the estimates from vision-based method and other sensors), Mu-

tExes [311] were used to prevent cases where the two threads might be competing

to access shared information at the same time (i.e. where race conditions occur).

The approach described here may appear as an implementation detail, but is

essential if one is to show that the system is working based on the principles laid

out in section 2.9 (i.e. using parallelism for performance). This approach resulted

in satisfactory frame rates in the final application.

6.3.3 Tracking system

The fusion algorithm was tested on a simple tracking system designed for this

study. As shown in Figure 6.12, the system consists of a laptop computer (Intel,

dual core 2.80Ghz, 4GB memory with Linux operating system), a GPS receiver,

an IMU and a web camera. An external power supply was also required for the

hub connecting the sensors to the laptop since a single port was not able to provide

enough power for the three sensors.

The placement of the sensors was chosen considering the lever-arm effect [312]

which occurs particularly in GPS–IMU integration systems when sensors are
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Figure 6.12: Tracking system

placed apart from each other, so that the positional and rotational data sensed by

them correspond to different positions. With this in mind, the camera, IMU and

the antenna of the GPS are all placed 2–3 cm apart from each other, a negligible

distance.

6.4 Fuzzy Logic Based Multiple Motion Models

There are a number of uncertainties related to the sensors used for obtaining

motion estimates as measurements for the fusion filter. These uncertainties and

imprecisions arise from the accuracy problems of the GPS, loss of fine motion detail

in the vision-based approach and drift problems in case of the IMU. A fusion of

multiple sensors and combining estimates from them significantly reduces these

problems and provide more accurate results.

Another reason that causes tracking problems is actually a different source

of uncertainty, the motion patterns followed by the user. A user, in a cultural



CHAPTER 6. FUZZY INTEGRATION OF MULTIPLE SENSORS 229

heritage context, may follow a number of motion patterns, which may include

stopping to examine ruins, walking slowly looking around or walking with a higher

speed. The filter developed in section 6.3.1 uses a constant transition function (F

in (6.6)) which does not take into account any information about the actual motion

pattern performed by the user in the prediction stage. An improvement can be

achieved if the filter is dynamically adapted based on the user’s motion patterns.

The reason behind this is that the dynamics of the filtering process is governed by

both the internal parameters of the filter, such as the state x and noise parameters

(Q for the process and R for the measurement noise, see Figure 4.5), and on the

external side by the motion model used in F for prediction.

This section presents Fuzzy Adaptive Motion Model (FAMM), a method of

employing fuzzy logic to decide which one of the several motion models is the best

fitting one, so that the filter state will be more in line with the measurements and

hence converge faster.

6.4.1 Handling the uncertainty in fusion filter

The idea presented here is to use adaptive motion models depending on the KF

innovation (y) with an attempt to minimize the filter error. The innovation is

actually hidden in the second line of the update part in the KF in Algorithm 1

where the filter is updated in order to obtain the next value of the state using the

measurements:

xi+1 = x̂i+1 +Ki(zi − hix̂i+1) (6.8)

The difference between the measurements (z) and the prediction (hx̂), omitting
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the subscripts indicating time, is defined as the innovation (y):

y = z − hx̂ (6.9)

For the filter designed in the previous section, the innovation y can be broken into

two parts for positional (yp) and rotational (yr) data by taking the corresponding

matrix elements. These elements refer to the measurement errors for positional

and rotational estimates and will be used to decide on the motion model to be

used in the next prediction stage (Figure 6.13) with the aim of reducing filter

error.

Figure 6.13: Selection of the motion model for next prediction stage.

The design here makes use of nine motion models MM , each denoted as PiRj

where i, j ∈ (0, 1, 2). Values for i and j are considered as velocity coefficients (ci

and cj) for the two components of the transition function (F ) for position

x̂P = xP + ciV∆t (6.10)

and orientation as

x̂R = xR + cjΩ∆t (6.11)
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The idea presented here can be best described using examples of how these

motion models work. For instance, P0R0 indicates a stationary transition model

where the current values of the state (6.5) for position (P ) and rotation (R) will be

unchanged in the predicted state, whereas P1R2 indicates a motion model where

position is predicted with current positional velocities (x̂P = xP + (1V )∆t) but

rotational velocities are doubled (j = 2 so x̂R = xR + (2Ω)∆t) to compensate for

the effects of severe rotations.

Actual selection of the motion model is achieved using a FLC which takes the

yp and yr parameters, calculated in the update stage of the filter. In the imple-

mentation, magnitudes of yp and yr are calculated and then the input membership

functions are applied to them. The output of the membership function will define

the ‘firing strengths’ of rules. The rule with the maximum firing strength is se-

lected to choose the motion model that will be used in the next prediction stage.

This process is illustrated in Figure 6.14, is essentially a more detailed exposition

of Figure 6.13.
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Figure 6.14: Fuzzy rule-based selection of motion models. The FLC takes the
two components of the innovation (i.e. positional and rotational) and applies the
membership functions in order to decide the firing strengths of the rules available
in the rule-base. The antecedents of the rules are used to define the motion model
used in the prediction stage of the next filter iteration.

Using the innovation values, a rule-base was designed for motion models which

are used to fill the components of the transition matrix (F ) to provide this func-

tionality.

6.4.2 Rule-base definition

The rule-base consists of the rules which can be examined in two parts namely

the antecedent and the consequent. The antecedent part defines the conditions

to be satisfied for the consequent to occur. In this case, the antecedents will
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include the membership values for the positional and rotational innovations and

the current type of the motion model in order to select the motion model for the

next prediction as the consequent.

A rule of the form <Low, Medium, P0R0, P0R1>, uses the first three compo-

nents as antecedents and the last as the consequent, should be read as:

“IF the positional innovation is Low AND

rotational innovation is Medium AND

the current motion model (Mk) is P0R0, THEN

change the motion model to P0R1 (Mk+1) for the next iteration of the

filter.”

The rule-base presented in Table 6.5 consists of 34 = 81 rules ln where l is the

number of linguistic variables (three for (Low, Medium,High) and n is the number

of input variables (four for yp, yr and Mk which counts for two variables since

Mk = PiRj).

Table 6.5: Rule-base for multiple motion models

Position Rotation Current Model (Mk) Selected Model (Mk+1)

Low Low P0R0 P0R0

Low Medium P0R0 P0R1

Low High P0R0 P0R2

Low Low P0R1 P0R1

Low Medium P0R1 P0R2

Low High P0R1 P0R0

Low Low P0R2 P0R2

Continued on next page
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Table 6.5 – Continued from previous page

Position (yp) Rotation (yr) Current Model Selected Model

Low Medium P0R2 P0R1

Low High P0R2 P0R0

Low Low P1R0 P1R0

Low Medium P1R0 P1R1

Low High P1R0 P1R2

Low Low P1R1 P1R1

Low Medium P1R1 P1R2

Low High P1R1 P1R0

Low Low P1R2 P1R2

Low Medium P1R2 P1R1

Low High P1R2 P1R0

Low Low P2R0 P2R0

Low Medium P2R0 P2R1

Low High P2R0 P2R2

Low Low P2R1 P2R1

Low Medium P2R1 P2R2

Low High P2R1 P2R0

Low Low P2R2 P2R2

Low Medium P2R2 P2R1

Low High P2R2 P2R0

Medium Low P0R0 P1R0

Medium Medium P0R0 P1R1

Medium High P0R0 P1R2

Continued on next page
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Table 6.5 – Continued from previous page

Position (yp) Rotation (yr) Current Model Selected Model

Medium Low P0R1 P1R1

Medium Medium P0R1 P1R2

Medium High P0R1 P1R0

Medium Low P0R2 P1R2

Medium Medium P0R2 P1R1

Medium High P0R2 P1R0

Medium Low P1R0 P2R0

Medium Medium P1R0 P2R1

Medium High P1R0 P2R2

Medium Low P1R1 P2R1

Medium Medium P1R1 P2R2

Medium High P1R1 P2R0

Medium Low P1R2 P2R2

Medium Medium P1R2 P2R1

Medium High P1R2 P2R0

Medium Low P2R0 P1R0

Medium Medium P2R0 P1R1

Medium High P2R0 P1R2

Medium Low P2R1 P1R1

Medium Medium P2R1 P1R2

Medium High P2R1 P1R0

Medium Low P2R2 P1R2

Medium Medium P2R2 P1R1

Continued on next page
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Table 6.5 – Continued from previous page

Position (yp) Rotation (yr) Current Model Selected Model

Medium High P2R2 P1R0

High Low P0R0 P2R0

High Medium P0R0 P2R1

High High P0R0 P2R2

High Low P0R1 P2R1

High Medium P0R1 P2R2

High High P0R1 P2R0

High Low P0R2 P2R2

High Medium P0R2 P2R1

High High P0R2 P2R0

High Low P1R0 P0R0

High Medium P1R0 P0R1

High High P1R0 P0R2

High Low P1R1 P0R1

High Medium P1R1 P0R2

High High P1R1 P0R0

High Low P1R2 P0R2

High Medium P1R2 P0R1

High High P1R2 P0R0

High Low P2R0 P0R0

High Medium P2R0 P0R1

High High P2R0 P0R2

High Low P2R1 P0R1

Continued on next page
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Table 6.5 – Continued from previous page

Position (yp) Rotation (yr) Current Model Selected Model

High Medium P2R1 P0R2

High High P2R1 P0R0

High Low P2R2 P0R2

High Medium P2R2 P0R1

High High P2R2 P0R0

The rule-base presented here consists of a relatively large number of rules in

order to handle all different transitions between motion models. For this reason,

the rules are stored in a look-up table so that they can be accessed with a single

query on the antecedent parameters. This design did not bring an extra computa-

tional overhead to the system, which is already using current resources at optimal

capacity.

6.4.3 Input/Output membership functions

Earlier, it was mentioned that different velocity coefficients were used to allow a

multiple motion models. These coefficients (i, j ∈ (0, 1, 2)) correspond to three

fuzzy sets corresponding to three linguistic variables: Low, Medium and High.

Calculation of the membership degrees for these linguistic variables are performed

using the input membership functions defined as in Figure 6.15 using the crisp

values of yp and yr.
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Figure 6.15: Input membership functions for positional and rotational innovations
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The output membership function of the FLC is a singleton suggesting only

one type of motion model based on the results of the input membership function

and the rule-base, as shown in Figure 6.16. Note that the colours used to describe

motion models will be used indicate the type of the motion model employed for

different sections of the trajectory in section 6.5.
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Figure 6.16: Output membership function

6.4.4 Processing

The FLC is implemented as a motion model behaviour which receives the posi-

tional and rotational innovations are parameters. The AND logical connector is

represented using the product t-norm [126]. The firing strength of each is calcu-

lated by multiplying the membership values (µLow, µMed and µHigh) of positional

and rotational innovations. The fire strengths for the rules which do not include

the current motion model in its third antecedent are simply set to zero and the
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consequent of the rule with the maximum fire strength is selected as the motion

model for the next prediction step.

6.5 Results

Figures 6.17 to 6.21 show the ground truth path and the estimated paths using

integration of different sensors and employing different motion models based on

the FAMM presented in section 6.4. Portions of the estimated paths are coloured

differently, emphasizing the type of the motion model used for estimation. It is

important to note that the CMM used in the figures correspond to P1R1 and hence

is drawn in the same colour.

Figure 6.19 shows data when the tracking system was completely stationary

(i.e. no positional or rotational motion). Note how the motion is correctly esti-

mated in (d) and (e) as P0R0 which corresponds to a stationary motion model. A

second thing to mention here is that the positional accuracy has been reduced to

' 1 metres when the GPS is used with other sensors – an improvement on the

results in Figure 6.4, where the positional accuracy was found as more than 2.5

metres.

The advantage of using a camera and the FAMM is clearly shown in Fig-

ure 6.21, an example case for loop–closing. The integration of GPS and IMU

could not handle the last segment of the path both when CMM (b) and FAMM

(d) are used. In (c), the last segment was identified using integration of the cam-

era with the two other sensors; however, the direction was not correct. Employing

FAMM with the three sensors, shown in (e), gives the most accurate estimation.

Furthermore, the overall shape of the estimated trajectory is closest to the ground

truth path.
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(a) Ground truth data

●

−140 −120 −100 −80 −60 −40 −20 0

−
10

0
−

50
0

50

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●●

●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●
●●●
●●●●●●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

X in metres (m)

Y
 in

 m
et

re
s 

(m
)

(b) Path using GPS and IMU with CMM

●

−120 −100 −80 −60 −40 −20 0

−
10

0
−

50
0

50

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●
●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

X in metres (m)

Y
 in

 m
et

re
s 

(m
)

(c) Path using GPS, camera and IMU with
CMM

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−140 −120 −100 −80 −60 −40 −20 0

−
10

0
−

50
0

50

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●

●

●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●
●
●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●

●

X in metres (m)

Y
 in

 m
et

re
s 

(m
)

P0R0
P0R1
P0R2
P1R0
P1R1
P1R2
P2R0
P2R1
P2R2

(d) Path using GPS and IMU with FAMM

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−140 −120 −100 −80 −60 −40 −20 0

−
10

0
−

50
0

50

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●

●

●

●

●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●
●
●●●
●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

X in metres (m)

Y
 in

 m
et

re
s 

(m
)

P0R0
P0R1
P0R2
P1R0
P1R1
P1R2
P2R0
P2R1
P2R2

(e) Path using GPS, camera and IMU with
FAMM

Figure 6.17: Real and estimated paths for dataset 1. Colours indicate the type of
the motion model employed for estimating a part of the path.
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(a) Ground truth data
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Figure 6.18: Real and estimated paths for dataset 2. Colours indicate the type of
the motion model employed for estimating a part of the path.
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(a) Ground truth data
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(b) Path using GPS and IMU with CMM
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Figure 6.19: Real and estimated paths for dataset 3. Colours indicate the type of
the motion model employed for estimating a part of the path.
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Figure 6.20: Real and estimated paths for dataset 4. Colours indicate the type of
the motion model employed for estimating a part of the path.
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(e) Path using GPS, camera and IMU with
FAMM

Figure 6.21: Real and estimated paths for dataset 5. Colours indicate the type of
the motion model employed for estimating a part of the path.
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Figures 6.22 to 6.23 present the estimated orientations for the datasets using

the CMM and FAMM. One thing to mention in these orientation plots is that

there is less jitter when the FAMM is employed for the motion model.
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Figure 6.22: Estimated rotations for CMM and FAMM for dataset 1. Colours
indicate the type of the motion model used to estimate the orientation.
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(b) Orientation using FAMM

Figure 6.23: Estimated rotations for CMM and FAMM for dataset 2. Colours
indicate the type of the motion model used to estimate the orientation.
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(b) Orientation using FAMM

Figure 6.24: Estimated rotations for CMM and FAMM for dataset 3. Colours
indicate the type of the motion model used to estimate the orientation. Note the
discontinuities in estimated rotations, which can be around 1◦.



CHAPTER 6. FUZZY INTEGRATION OF MULTIPLE SENSORS 250

●

0 200 400 600 800 1000 1200 1400

0
20

40
60

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●
●●●●
●●●●●●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●
●●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●●●●●
●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●

●●●●●
●●●●●
●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●
●●●●●●●●●●

●●●●●●●●●●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●
●●●●
●●●●●●
●●●●●●●
●●●●●
●●
●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●
●●●●●●
●●●●●●●●●●●●●●●●●

●●●●
●●
●●●●●●●●●●●●●●

●●
●●
●●
●
●●
●●
●●
●●●
●●●
●●
●●
●●●
●●
●●●
●●●
●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●●

●●●
●●●●●●●●●●●●

●●●
●●●●●●
●●●●●●●●●●●●

●●●
●●●●
●●●
●●●●
●●●●●●●
●●
●

Ya
w

 in
 d

eg
re

es
 (

°)

●

0 200 400 600 800 1000 1200 1400

0
10

20
30

40

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●●●●

●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●
●●
●●●●●●●●●●

●●●●●●●●●●
●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●
●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●
●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●
●●●●
●●●●●
●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●

P
itc

h 
in

 d
eg

re
es

 (
°)

●

0 200 400 600 800 1000 1200 1400

−
5

5
15

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●

●●●●
●●●●●●●
●●
●●
●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●
●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●

●●●●
●●
●●
●●
●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●

●●●●
●●●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●
●●●
●●●●●●●●●

●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●

●
●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●

●●●●
●
●●●●●●●●
●●
●●●●●●●●●●●●●

●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●

●●●●●
●●●●●●●●
●
●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●
●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●

●
●●●●●●●●●●●

●●●
●●
●●●●●
●●●●●●●
●●●●
●●●●●●●●●

●●●
●●●
●●●●●
●●
●●●●
●●●●●●●
●●
●●●●●●●●●●●●

●●
●●●●●●●●●●●●●

●●
●●●
●●●●●●●
●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●
●●
●●●●●●
●●●
●●●●●●●●●

●●●●●●
●
●●
●●●●●
●●●●●●●
●●●●●●
●
●●●●
●●●●●
●●●●●●●
●●●●
●●
●●●●
●●
●●●●●
●●●●●●
●
●●●●
●
●
●●●
●●●●
●
●●●●
●●●●●●
●
●●
●●●
●
●●●●
●●
●●●●●●●
●
●●●●
●●●
●●●●●
●●●●●●●●
●●●●●●●●●

●●●●
●●
●●
●●●●
●●●●●●
●●
●●
●●
●●
●
●●
●●
●●●
●●●
●●●
●●●●●
●●
●●●
●●
●●●●
●●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●
●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●●●●●
●●●●
●●●●●●●
●●●
●●●●●●
●

Samples

R
ol

l i
n 

de
gr

ee
s 

(°
)

(a) Orientation using CMM

●

0 200 400 600 800 1000 1200 1400

0
20

40
60

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●●●●●

●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●●●●●●●●●●●

●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●
●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●
●●●●
●●●●●●●●
●●

Ya
w

 in
 d

eg
re

es
 (

°)

●

0 200 400 600 800 1000 1200 1400

0
10

30

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●

●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●
●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●
●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●

P
itc

h 
in

 d
eg

re
es

 (
°)

●

0 200 400 600 800 1000 1200 1400

−
5

5
15

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●

●●●●
●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●●●●●●●●●●●

●●●
●●●●
●●●●●●●●●

●●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●

●
●●
●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●

●●
●●●●●●●●●●

●●●
●●●
●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●
●●●
●●●●●
●●
●●●●
●●●●●●●
●●●●●
●●●●●●●●●

●●●
●●●●●●●●●●●●

●●
●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●
●●●●●●●●●●

●●●●●
●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●
●●●●●
●●●●●●●
●●●●
●●
●●●●
●●
●●●●●
●●●●●●
●
●●●●
●
●
●●●
●●●●
●
●●●●●●●●●●

●
●●
●●●
●
●●●●
●●
●●●●●●●●
●●●●●●
●●●
●●●
●●●●●●●●
●●●●●●●●●

●●●●●
●
●●●●●●●●●●●●

●●
●●
●●●
●●
●●
●●
●●●●
●●●
●●●
●●●●●
●●
●●●
●●●●●
●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●

●●●
●●●●●●
●

R
ol

l i
n 

de
gr

ee
s 

(°
)

Samples

P0R0
P0R1
P0R2

P1R0
P1R1
P1R2

P2R0
P2R1
P2R2

(b) Orientation using FAMM

Figure 6.25: Estimated rotations for CMM and FAMM for dataset 4. Colours
indicate the type of the motion model used to estimate the orientation.
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(b) Orientation using FAMM

Figure 6.26: Estimated rotations for CMM and FAMM for dataset 5. Colours
indicate the type of the motion model used to estimate the orientation.
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The aim of using multiple motion models was to decrease the uncertainty in the

filter due to user motion, which is not always predictable. This observed decrease

is mainly due to the selection of the most appropriate motion model, better fitting

the measurements providing more supporting evidence for the filter so that it is

more certain of its current state. The state covariance matrix of a KF (Σ in

Algorithm 1) includes this estimate of uncertainty as well as correlations between

state vector (x) elements. The diagonal elements indicate the variances and off-

diagonal ones store correlations [313]. This matrix uses the information provided

to the filter through the Kalman gain (K) indirectly from the measurements.

The changes in the state covariance matrix are shown in Figures 6.27 to 6.31

where colours of the squares are associated with the magnitude of the matrix

elements. The scales for colours in the diagonal elements for the state covariance

matrix in the figures for FAMM indicate a decrease in system uncertainty when

it is used instead of CMM.
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(a) GPS–IMU with CMM
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(b) GPS–IMU with FAMM
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(c) Camera–GPS–IMU with CMM
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(d) Camera–GPS–IMU with FAMM

Figure 6.27: Changes in the state covariances for dataset 1 when CMM and
FAMM are employed for GPS–IMU and camera–GPS–IMU integration. Colours
indicate the magnitude of the covariance matrix elements. Amount of uncertainty
is illustrated by higher magnitudes (darker colours).
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(b) GPS–IMU with FAMM
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(c) Camera–GPS–IMU with CMM
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(d) Camera–GPS–IMU with FAMM

Figure 6.28: Changes in the state covariances for dataset 2 when CMM and
FAMM are employed for GPS–IMU and camera–GPS–IMU integration. Colours
indicate the magnitude of the covariance matrix elements. Amount of uncertainty
is illustrated by higher magnitudes (darker colours).
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(a) GPS–IMU with CMM
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(b) GPS–IMU with FAMM
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(c) Camera–GPS–IMU with CMM
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(d) Camera–GPS–IMU with FAMM

Figure 6.29: Changes in the state covariances for dataset 3 when CMM and
FAMM are employed for GPS–IMU and camera–GPS–IMU integration. Colours
indicate the magnitude of the covariance matrix elements. Amount of uncertainty
is illustrated by higher magnitudes (darker colours).
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(a) GPS–IMU with CMM
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(b) GPS–IMU with FAMM
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(c) Camera–GPS–IMU with CMM
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Figure 6.30: Changes in the state covariances for dataset 4 when CMM and
FAMM are employed for GPS–IMU and camera–GPS–IMU integration. Colours
indicate the magnitude of the covariance matrix elements. Amount of uncertainty
is illustrated by higher magnitudes (darker colours).
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(a) GPS–IMU with CMM
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(b) GPS–IMU with FAMM
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(c) Camera–GPS–IMU with CMM
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(d) Camera–GPS–IMU with FAMM

Figure 6.31: Changes in the state covariances for dataset 5 when CMM and
FAMM are employed for GPS–IMU and camera–GPS–IMU integration. Colours
indicate the magnitude of the covariance matrix elements. Amount of uncertainty
is illustrated by higher magnitudes (darker colours).
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It is also known that the state covariance matrix (Σ) is an approximation

and not an actual error [314]. For this reason, the filter errors are also shown

in Figures 6.32 to 6.36. Note that these errors are an indicator of the difference

between the filter predictions and the actual values of the measurements, not the

error calculation for ground truth data, which is shown in Figures 6.17 to 6.21.
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(a) Filter error using GPS and IMU
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(b) Filter error using GPS, camera and IMU

Figure 6.32: Filter errors for dataset 1 for CMM and FAMM. The mean error is
shown with the dashed line.
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(a) Filter error using GPS and IMU
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(b) Filter error using GPS, camera and IMU

Figure 6.33: Filter errors for dataset 2 for CMM and FAMM. The mean error is
shown with the dashed line.
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(a) Filter error using GPS and IMU
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(b) Filter error using GPS, camera and IMU

Figure 6.34: Filter errors for dataset 3 for CMM and FAMM. The mean error is
shown with the dashed line.
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(a) Filter error using GPS and IMU
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(b) Filter error using GPS, camera and IMU

Figure 6.35: Filter errors for dataset 4 for CMM and FAMM. The mean error is
shown with the dashed line.
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(b) Filter error using GPS, camera and IMU

Figure 6.36: Filter errors for dataset 5 for CMM and FAMM. The mean error is
shown with the dashed line.
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Further to Figures 6.32 to 6.36, a decrease in the filter error is visible when

FAMM is employed to choose the motion model; see also Tables 6.6 and 6.7.

Table 6.6: Mean and standard deviation of the filter error for the integration
of GPS and IMU. Arrows indicate an increase/decrease when the FAMM is em-
ployed.

CMM FAMM

Dataset Size Mean Err. Std. Err. Mean Err. Std. Err.
1 3388 1.106497 0.638612 1.087659 0.633043 ↓
2 1735 0.884078 0.554315 0.903469 0.563023 ↑
3 182 0.372074 0.247346 0.154518 0.232001 ↓
4 1406 0.872035 0.573797 0.871161 0.569474 ↓
5 3515 0.497994 0.430623 0.511027 0.447664 ↑

Table 6.7: Mean and standard deviation of the filter error for the integration of
camera, GPS and IMU. Arrows indicate an increase/decrease when the FAMM is
employed.

CMM FAMM

Dataset Size Mean Err. Std. Err. Mean Err. Std. Err.
1 3388 1.234321 0.885747 1.168871 0.732295 ↓
2 1735 0.953222 0.576215 0.937526 0.581637 ↓
3 182 0.155107 0.230386 0.343855 0.240241 ↑
4 1406 0.894683 0.563316 0.897089 0.569789 ↑
5 3515 0.543074 0.442076 0.498571 0.384069 ↓

It can be seen that using an adaptive motion model (FAMM) decreases the

error in general. It is also interesting to see that there are differences in errors when

the fusion filter used estimates from different sensors and it can be seen that this

error increased when the integration of camera, GPS and IMU is used for almost all

datasets due to an additional source of noise. Note that the calculated error here is

the filter error as a measure of filter convergence –not the ground truth positional

error. The performance of the developed filter using three sensors in positional

accuracy over the conventional GPS-IMU fusion can be seen clearly in the path
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plots. One exception to this is the decrease for dataset 5 when FAMM was used.

For this dataset, the accuracy of the filter was also obvious from the estimated

path (Figure 6.21(e)). For the stationary dataset (3), the error decreased when the

FAMM was use in a GPS–IMU integration but increased in the case of addition

of the camera estimates to these two sensors. This is suspected to be due to the

large baseline requirement (see section 4.4.1) for the two-view motion estimation

algorithm, which is not possible when there is no motion.

6.6 Remarks

This chapter presented a tracking system using a fusion of the motion estimates

from a camera, GPS receiver and IMU sensor within a KF framework and em-

ploying FAMM in order to reduce the filter error.

The discussion started by presenting the details about the sensors used in the

experiments and described the sources of error that cause problems in tracking.

Then, the methods used for obtaining motion (i.e. position and orientation)

estimates from these sensors were described.

A sensor fusion algorithm employing these three sensors was presented in or-

der to overcome the tracking errors (the static and dynamic errors mentioned

earlier). The filter consisted of a simple state consisting of elements for posi-

tion and orientation. Initially, this filter used a simple transition function. The

motion estimate from the camera was applied to the GPS position estimate and

this was interpolated by the IMU estimate in order to provide a continuous and

smooth navigation. The estimate for orientation was obtained using the IMU

filter [6]. The estimations from these sensors were calculated in different threads

for performance.
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The initial transition function was later updated by adaptive motion models

which worked using fuzzy rules defining which motion model will be employed.

These adaptive motion models had two parts, for the calculating the transition

for the position and orientation estimates separately.

The results showed that the integration of the camera with GPS and IMU sen-

sors provided more accurate results for tracking than a conventional GPS–IMU

sensor fusion. From chapter 4, the vision-based algorithm was capturing the over-

all motion; however, fine detail was missing in the motion estimate. Furthermore,

motion estimation was not accurate in cases of fast movements or cases when there

is no motion. For the GPS, position estimate was erroneous and not accurate.

IMU was accurate for a very short term, then drift was becoming a problem.

When the three sensors were used together, these problems were significantly

reduced. The motion estimates from the camera reduced the accuracy problems

for the GPS. This was further improved by using the IMU so that fine detail of

the motion could also be captured. This integration of several sensors solved the

problems related to static errors related to the accuracy of sensors.

Making use of the multiple threads allowed a better utilisation of the available

resources. A second advantage of this design is that it helped reduce the dynamic

errors, due to the end-to-end system delay, by providing a better frame rate.

This work also showed that multiple-motion model sensor fusion can be achieved

by utilising KF innovation together with a fuzzy rule-base. The results show that

the use of fuzzy adaptive motion models can reduce the filter error and prevent

divergence. It is clear that selection of the appropriate motion model depending

on user’s speed improves the accuracy of KF for tracking applications such as the

ones presented in chapter 7.



CHAPTER 7

CULTURAL HERITAGE

APPLICATIONS

Developments in multimedia technology facilitate the learning experience in cul-

tural heritage [315] with the aid of improved user interaction methods. Models or

virtual tours of reconstructions of archeological sites (e.g. [165], [167]) provide an

entertaining means of learning. However, ex situ reconstructions such as models

and movies are difficult to visualize in the context of the archaeological remains.

One application of AR in cultural heritage [163, 166] can solve this problem

by introducing in situ reconstructions that enrich the visiting experience of a

heritage site with 3D models of ancient buildings. Another attractive property of

AR reconstructions is that they can be rendered in situ with little or no physical

disturbance to the ruins or artefacts (see section 2.6.1), even though such systems

may take a significant time to develop [316].

264
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There are several forms that AR reconstructions may take. Some applications

allow the user to view reconstruction of ancient buildings by standing at a fixed

viewpoint as in [163,164], while others allow navigating within a heritage site [317].

There are also studies which insert animated human models in order to emphasize

the social value of a particular part of a building [318].

Kinect has also been used in the context of cultural heritage. For instance,

Remondino [170] presented a review of using different types of imaging and depth

sensors, including Kinect, to perform 3D scanning of archaeological objects for

digital recording, historical documentation and preservation of cultural heritage.

Richards-Rissetto et al. [171] used Kinect’s body motion detection features to

perform navigation in a 3D reconstructed model of an ancient Mayan city.

The principal problem faced in AR applications concerns the accuracy of user

tracking and, consequently, the registration of 3D models with real-world fea-

tures [11,143,212,319]. When the 3D structure of the environment (feature posi-

tions, and internal/external parameters of the camera, etc.) is known, sufficient

accuracy can be obtained to match virtual and real objects seamlessly; as a rule

of thumb, this involves identifying the direction of gaze to ∼ 1◦ in azimuth and

elevation, and locating the position to ∼ 0.1 m [11].

A second important consideration is the frame rate. This relates to the dy-

namic errors [143] when the AR system cannot render the graphics quickly in

accordance with the user’s motion and most recent viewpoint (see section 2.8).

With these problems in mind, this chapter makes use of the algorithms pre-

sented in chapters 5 and 6 for three different exemplar AR applications aimed

for use in a cultural heritage context. The discussion starts with explaining the

stages of modelling of the 3D models used in the applications. These stages in-

cluded generating the 3D model itself using different modelling techniques (e.g.
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using profiles, Boolean operations, etc.), then optimizing the models to reduce

the number of vertices and increase rendering speed, then finally wrapping the 3D

models with textures for a more realistic look. The chapter continues the discus-

sion by describing the rendering pipeline in section 7.2, including the game engine

used for rendering and its scene graph structure, the approach used to render 3D

models over the images acquired by the camera; and audio handling which is used

in one of the three applications.

All of the applications of this chapter display the environment in an egocentric

view [160] similar to First Person Shooter (FPS) games. The first application,

presented in section 7.3, is an in situ augmentation which calculates the pose of

the camera using 3D–2D correspondences using the depth information obtained

from the Kinect sensor. Following this, rectangular features similar to columns

found in the environment are augmented with synthetic column models. The

application also shows that Kinect’s skeleton tracking features can be used to

augment the appearance of humans, so that they can be clothed in a way that

matches their surroundings, in particular with galea1, toga and sword. Existing

AR systems in the cultural heritage domain do not attempt the latter, yet the

author considers to be essential if participants are truly to experience a sense of

presence following the ideas presented in [4].

The chapter presents a second application in section 7.4 which displays the

State Agora2 of ancient Ephesus by employing the tracking system developed in

chapter 6. With this application, a user can walk inside the large building.

As a final application, section 7.5 describes an AR game in which the user

aims to collect all reward items in the shortest time in order to obtain the highest

1A galea is a Roman military helmet.
2An agora is a public gathering place where discussions on politics, religion and commerce

took place in ancient Greek cities.
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score. This game can also be used together with the second application, giving a

new aspect to cultural heritage applications of AR.

7.1 Generating 3D models

For any application making use of 3D models, creation of these models constitute

a significant part of its development. This process is involved, especially if one

is creating models for a cultural heritage application since fidelity to the original

building structures [168] is an important consideration. This is followed by a stage

called optimization in which the number of vertices and faces used to create the

model are reduced as much as possible, since this will significantly affect the time

spent rendering the models. The final stage includes ‘wrapping’ the 3D models

with a texture for a more realistic appearance. Details of these stages are described

below.

7.1.1 Modelling

Models of ancient columns and other building parts were created using 3D Max [320].

Buildings were modelled [167] in accordance with reconstruction images prepared

by archaeologists [1], [2]. AutoCAD [321] was used to draw 2D profiles of buildings

and other structures such as columns, as shown in Figure 7.1(a). These profiles

were later exported to 3D Max where a number of different approaches can be

used for modelling. Some of the 3D models were created using modifiers such as

bevel profile which rotates the given profile around a boundary (e.g. square, circle

etc.) to produce a 3D object (Figure 7.1(b)).

Buildings similar to houses can be created using the extrude modifier. This is

done by first drawing closed lines that represent the walls of the building. These
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(a) Column profiles (b) 3D column created from
the profiles

Figure 7.1: Creating 3D models of the columns in front of the Hadrian temple
by spinning its profile around a circle based on the structure of the ruins and the
reconstruction image in Figure 1.1.

lines are then extruded to yield solid walls as in Figure 7.2(a). Boolean operations

(e.g. subtraction, union) are utilized to create the building windows and doors.

Window and door profiles were again extruded to create 3D objects and then

these are subtracted from the walls as depicted in Figure 7.2(b).

After creating models, the next step is reducing the number of faces used in

the models for performance improvement.

7.1.2 Optimization

3D models having a large number of vertices (and hence faces) reduce the frame

rate of a real-time application. For this reason, the models created in the previous

section were optimized using the MultiRes modifier, which works by first comput-

ing the number of vertices and faces in a model, then allows the user to eliminate
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(a) Extrusion from profiles (b) Boolean subtraction

Figure 7.2: Methods for creating buildings. In (a), walls of a building can be
drawn in form of lines and then these lines can be converted into 3D walls. Using
these walls, blocks (shown with purple objects in (b)) can be subtracted in order
to create the windows for the building.

some of them manually. This method proved to be effective for 3D models con-

sisting of thousands of faces. For instance, for the spherical portion of the helmet

model of Figure 7.3, the overall look can be retained with only 60 vertices (only

16.95% of the original 354 vertices) and 97 of the initial 657 faces, though some

fine detail has been sacrificed in Figure 7.3(b).

The optimization process had a more significant improvement in the applica-

tion displaying the state agora model, presented later in section 7.4 (Figures 7.15

and 7.16), where a large number of columns were present with a cylindrical shape

and added detail, especially in the capital (top) section of the columns. Optimiza-

tion results for different parts of the complete model are presented in Table 7.1.

The optimization stage was followed by preparing textures for use on the

models.
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(a) Original model (b) Optimized model

Figure 7.3: Effect of optimization on the helmet model, artefacts are noticeable
on closer examination in (b)

Table 7.1: Optimization results for parts of the State Agora model. Vertices
and Faces indicate the number of vertices and faces after the optimization, where
as Max. Vertices and Max. Faces denote the numbers before optimization.
Decrease shows the percentage of optimization in the number of vertices.

Part Vertices Max. Vertices Faces Max. Faces Decrease (%)
Middle 4115 4328 8126 8552 4.921

Left 18804 25939 37616 51886 27.507
Right 5920 7040 11840 14080 15.909
Back 3040 3520 6080 7040 13.636
Front 13642 14949 25736 28303 8.743
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7.1.3 Texture baking

A texture is a repeating detailed pattern that is applied to models. Texture

mapping provide fine surface details (e.g. colour, reflection, normal vector per-

turbation (“bump mapping”) etc.) [322] without requiring much effort to obtain

them and hence produces a more realistic look in the final model.

A number of different textures (or materials) can be used for a model. When

modelling a human for instance, the texture that will be used for the hair will

be different than the texture used for the skin. Texture baking (also known as

“rendering to texture”) [323] is the process of creating a single texture map from

multiple materials that have been applied to a model. This needed to be done since

the game engine (see section 7.2.1) used for rendering required a single texture

per model. There are several ways to perform this [324, 325] including using a

light-map or incorporating shadows; the following method was found to produce

the best results in 3D Max and is explained with a sample model.

To produce a single texture from several materials applied to a model, one first

needs to make sure that the scene has adequate lighting, otherwise some faces of

the model will remain in shadow. This will result in the texture elements not

being prepared properly. A skylight was used in order to provide a global diffuse

illumination in the scene [326] as shown in Figure 7.4.

As can be seen from the sample model, two different textures (roof and bricks),

shown in Figure 7.5, were used. These are combined in a single texture map

according to the outer faces of the model.

In order to prepare the final texture which is rendered for each of the individual

faces of the model, the Unwrap UVW modifier is applied to the model to store the

current material map, which defines how the texture must wrap around a model
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Figure 7.4: Sample model and sky light

(a) Brick (b) Roof tile

Figure 7.5: Textures used in the sample model of Figure 7.4
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with a complex structure. After saving, all faces of the model are selected using

the face element of the modifier as shown in Figure 7.6.

Figure 7.6: Selecting individual faces of the model

The next step is to unwrap (flatten) all the individual faces of the model as

shown in Figure 7.7 and incorporate the material information into the output

texture. A more complex model looks as in Figure 7.8, when the faces are un-

wrapped.

Now that the system knows how the faces are placed when the model is flat-

tened, the next step is the actual rendering operation. This is done by the “Render

to Texture” feature of the software. During the experiments (and considering the

output by the game engine described in section 7.2), it was observed that the best

results are obtained when only the diffuse element is used, rather than elements

such as the complete map and lighting map. The output of the rendering is shown

in Figure 7.9 in form of a single texture file in TGA format.

Later, this single texture was applied to the model again, by removing the

previous texture material. Finally, the stored map must be applied to obtain the

original look of the model before texture baking; then the final model is obtained

as shown in Figure 7.10.
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Figure 7.7: Unwrapping the faces of the sample model for texture baking
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(a) Wireframe view of the model (b) Faces unwrapped

Figure 7.8: Unwrapping the faces of a complex model

Figure 7.9: Output texture
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Figure 7.10: Final model with the baked texture

This operation was performed for all the models used in the applications pre-

sented in this chapter.

7.2 The Rendering Pipeline

Having 3D models ready, the next step is to prepare a rendering environment

so that these models can be displayed on top of camera images acquired in real

time according to the current position of the user. The following subsections will

elaborate on how this is achieved.

7.2.1 Graphics engine and scene graph

Rendering is performed using the Irrlicht [327] game engine, which is an open

source, real-time 3D engine. The engine uses a scene graph and provides support

for a range of different file formats for loading and displaying the models created

in the previous section.

In order to use the game engine, one first needs to initialize the graphics device

parameters. An important point here is to set the dimensions of the graphics
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devices the same size as the input images as this yields better results when graphics

are rendered on the camera images.

The engine employs a scene manager, which is basically a scene graph; and

this manager is responsible for rendering the content. The scene graph shown in

Figure 7.11 has separate nodes for the camera, 3D meshes (models) and lighting.

Figure 7.11: Scene graph structure. A scene can consist of many nodes includ-
ing cameras, lights and meshes which can have child nodes for transformations,
texture and animations.

The camera scene node is derived from Irrlicht’s FPS camera. The main reason

behind this is that this camera can update its target vector automatically when

the position and orientation of the camera is updated using the camera pose-

finding algorithms presented in chapters 5 and 6. It is also worth mentioning

that this type of camera is normally handled by mouse input; this feature of the

camera was disabled so that the update will only be based on the results of the

algorithms presented.

The second important component of the scene graph is the mesh scene node,
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which stores information about a 3D model. Each model has mesh and texture

files created using the procedure described in section 7.1. The transformation

element of the mesh scene node describes the absolute position and orientation of

the model in the scene. The meshes used in the applications can be classified into

two groups, namely static and animated meshes. For instance, building models

are static meshes whereas coins in the AR game are animated meshes. Meshes

in the latter group have an optional animator element. This element allows the

meshes to rotate about their axes autonomously as an additional effect.

7.2.2 Rendering on camera images

When using optical-see-through displays, images from the real environment are

obtained automatically using a mirror in the display device and when the graphics

are rendered, the augmentation comes at no cost [148]. However, when using

video-see-through displays or a camera as the input source, as in this work, the

images of the real environment must also be rendered together with other graphics

in order to produce the final image. This required a common format which can

then be used to view both images, and the approach adopted was to convert

camera images to the texture format of the game engine. Raw pixel data of the

source image was copied into the format of the target image. At each call to the

function drawing the whole scene, first the camera image is rendered and then the

game elements are rendered on top of it.

7.2.3 Audio

The AR game presented in section 7.5 plays a simple sound when the user reaches

and collects an item. These sounds were played using Simple DirectMedia Layer
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(SDL), a multimedia library which is used to access low-level devices such as the

graphics card or the audio driver. This is achieved by first initializing the library

for its audio subsystem. Next, the SDL mixer is initialized using the frequency

(44100), format (AUDIO S16SYS), number of channels (2) and chunk size (2048)

parameters. Finally, the audio file in WAVeform audio file (WAV) format is loaded.

7.3 Application I: Kinect-Derived In Situ

Augmentation

In the first AR application developed for cultural heritage, objects and users in

the environment are augmented using column models and clothing appropriate to

a specific age’s fashion trends respectively.

The viewpoint required for augmentation is calculated using the approach

described in chapter 5 which uses the Kinect sensor to obtain 3D–2D feature

correspondences. These correspondences are used to obtain an initial estimate of

the camera pose and then this initial estimate is refined using a KF for additional

stability. With the viewpoint information obtained, rectangular features in the

image are identified and augmented with columns: this is a common requirement

in cultural heritage reconstructions in the eastern Mediterranean, as shown in

Figure 1.1.

The models created for this application are presented in Figure 7.12. As de-

scribed in section 7.1.2, the optimization step resulted in a 10−25% reduction in

the number of faces for the models. Usually, the more complex the model is, the

higher the proportion of faces that can be removed without a noticeable change

in appearance; here, these optimizations were most efficient in terms of remov-
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ing faces for the galea model (Figure 7.12(a)) due to its roughly spherical shape

(many faces are required for a smooth surface, hence many can be removed during

optimization) whereas the column (Figure 7.12(e)) was unable to accommodate

the removal of many vertices without losing detail of the capital (top) or pediment

(base) which can be seen in the column profiles in Figure 7.1(a).

(a) Galea (b) Sword (c) Toga

(d) Top arch (e) Column

Figure 7.12: Models created for the in situ augmentation application
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To illustrate the augmentation algorithms presented above, an application was

developed to augment rectangular regions of a specific size and aspect ratio in the

Kinect imagery. When the camera position and orientation had been found and

the centres of suitable rectangles identified, the 3D column models described in

section 7.1 were rendered in front of them. When rectangles were found at a

particular distance apart, a further model could be placed above the columns to

form an arch, as shown in Figure 7.13.

Figure 7.13: Augmenting columns over rectangles

The result of augmenting users is shown in Figure 7.14(a) for a single user

and in Figure 7.14(b) for two users. The general effect is acceptable for toga

and sword but minor registration errors are apparent for the galea model in the

case of a single user. These registration errors become more severe when multiple

users are present, and this appears to be due to the accuracy of skeleton tracking

decreasing when the user is not centred in the field of view.
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(a) Augmenting a single user with toga, galea and sword

(b) Augmenting two users

Figure 7.14: Augmenting participants
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Due to the use of the FAST detector with the BRIEF descriptor, the complete

augmentation process which can run at video rates (25fps).

7.4 Application II: A Visit to Ancient Ephesus

The second application presented here allows a user walk inside a large AR model

of the State Agora, shown in Figure 7.15, in the ancient city of Ephesus, located

in Turkey. The application makes use of the localization algorithm developed in

chapter 6 to allow a user’s motion in real world to be reflected in the application.

Figure 7.15: State Agora model

As can be seen, the model includes a large number of columns which follow

the Ionic design [328] (i.e. with scrolls on the capitals). Such a high number of

models with significant amount of detail add to the time required for rendering the

scene. Initial versions of the applications ran at 2–3fps, which is unsatisfactory.

The application’s frame rate benefited from the following improvements:
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1. Use of different threads for the module working for the vision-based algo-

rithm (see the detailed discussion in section 6.3.2) and the module handling

the GPS and IMU inputs to separate them from the fusion algorithms and

the augmentation part have significantly improved the frame rate.

2. Optimization of different parts of the model, as shown in Table 7.1, have

reduced the number of faces to be drawn facilitating a higher frame rate.

Especially columns which are abundant in the scene and have fine detail due

to the rolled structure of the capital were introducing a significant number

of faces before the optimization was performed.

3. Division of the complete model into 5 parts as shown in Figure 7.16 helped,

storing these parts separately in the scene graph. The rendering engine

will not render the parts of the scene graph which are not inside camera’s

viewing frustum.
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Figure 7.16: Division of the State Agora model for the scene graph
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Following these improvements, the frame rate increased to 16fps which is still

less than the de facto standards of 25–30fps yet providing an acceptable frame

rate. The third optimization in particular allowed the frame rate to remain stable

during display: frequent changes in frame rate according to the changing number

of faces visible in the scene makes for a poor experience. The base of the middle

part of Figure 7.16 was also removed in order to place the model on the ground.

Tracking is achieved on a laptop computer with the user wearing a helmet

instrumented with a camera, GPS and an IMU as shown in Figure 7.17. The

augmentations are displayed on the screen rather than an HMD.

Figure 7.17: User wearing the tracking system and displaying the models

Figure 7.18 presents views from the developed application. The user interface

for this application is quite simple, just displaying the name of the model and the

current frame rate.
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(a) Entering through the gate

(b) Inside the Agora

Figure 7.18: Views from the AR application
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7.5 Application III: An AR Game – Treasure

Hunt

The final application is an AR game, which again works using the tracking system

(chapter 6). The aim of the game is to collect items and direct the user to close

a loop within the SLAM context, albeit unconsciously.

As with previous applications, the game presents an egocentric view of the

environment. The rules of the game are quite simple: the user needs to reach

and collect all the reward items available as quickly as possible. When he or she

reaches an item, the score is incremented by an amount that depends on the type

of item encountered. The game provides three types of items: small coins, large

coins and a chest (Figure 7.19), with rewards of 10, 30 and 50 points respectively.

(a) Chest (b) Coin

Figure 7.19: Models used in the AR game

After the game is initialized with the positions of all items set, the game loop

starts. The coin models use the animator and they rotate about their axes while

the chest models remain static.

At each frame, the position of the user is checked against the item positions by
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calculating the distance between them. If this distance is less than some threshold

value (done so that there is some tolerance against positioning inaccuracies), then

the score is updated, the item is set as “hit” and a sound file is played as described

in section 7.2.3. The items collected by the user simply disappear. A timer is used

for two purposes. First, it is constantly updated in the display to provide feedback

to the user. It is also used to decay the score

score = initialScore× c/time (7.1)

where score is the final score to be added and initialScore correspond to the

rewards mentioned above. The constant c is selected as 5.0 arbitrarily. This

forces the user to collect the game tokens quickly.

Views from the AR game are presented in Figure 7.20. The game has an inter-

face which displays the score and time passed making the game more challenging

and hence interesting. Figure 7.20(b) shows that the game can also be played

with the AR reconstruction of the State Agora. Note the frame rate of the game

is higher when the game is displayed on its own (i.e. without the reconstruction).
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(a) User collecting reward items

(b) The game can be played inside the State Agora.

Figure 7.20: Views from the AR game
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7.6 Remarks

This chapter presented three simple AR applications for cultural heritage, using

the user-tracking algorithms described in earlier chapters. The discussion started

with the approaches used for creating the 3D models used in the applications:

the modelling stages included generation of the model using different modelling

techniques such as extrusion from 2D profiles or boolean operations. The next

stage reduced the complexity of the models to improve rendering performance.

The final stage was producing textures to give the models a more realistic look.

The rendering pipeline was presented in section 7.2, which consisted of three

main elements. The first of these was the graphics engine and the scene graph

which was responsible for the rendering of the 3D models. Secondly, the approach

used for rendering the camera images as the background for augmentation was

described: this converted the camera image to the texture format used by the

engine. After the texture is drawn, the 3D models were overlaid. The last element

of the rendering pipeline was the use of audio which was used to play simple sounds

when users reached reward items in the AR game of section 7.5.

The chapter then presented three applications developed for cultural heritage.

The first one (section 7.3) was an in situ augmentation application which overlaid

colum-like objects with synthetic 3D columns and people with ancient clothing.

The application used the in situ augmentation algorithm with Kinect described

in section 5.3 which finds the camera pose with 3D–2D correspondences thanks to

the depth sensor of Kinect. Rectangular structures found in the environment were

augmented with columns. Using the human skeleton tracking features of Kinect

users were also augmented with a toga, galea and sword.

The second application presented an AR reconstruction of the State Agora of
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ancient Ephesus. A user, wearing the tracking system presented in section 6.3.3,

can walk inside the model, allowing them experience the surroundings of ancient

times. This application can also be used in conjunction with the third application

presented in this chapter, in which the user tries to collect reward items such as

coins or chests as quickly as possible.

From the three applications presented here, it is clear that AR has a great po-

tential for cultural heritage. Using the tracking methods presented in chapters 5

and 6, the user position can be found with enough accuracy so that the augmen-

tation results are satisfactory. It is also important to note that these methods do

not require any set-up phase since they use the natural features extracted from

the environment. On the other hand, the rendering method used here does not

handle occlusions between the virtually inserted models and real world objects

due to simple overlay technique used.

The lack of any set-up phase and this speed of processing are important practi-

cal considerations for installations in museums that are to be used without super-

vision, or for use in educational games. Indeed, it is certain that AR applications

similar to ones presented here will improve the on-site learning experience [315]

and provide people with an incentive to learn about their and other people’s past

and protect the historical artefacts and monuments as a memory of the past.

The next chapter will summarize the contributions of the thesis, conclude the

thesis and present future directions.



CHAPTER 8

CONCLUDING REMARKS

This thesis aimed to develop user tracking methods for cultural heritage applica-

tions for indoor and outdoor environments. Mainly, a vision-based system (chap-

ters 4 and 5) is used for these purposes in indoor environments but a sensor fusion

approach (chapter 6) was found to provide better tracking results in outdoor envi-

ronments. The conclusions from this work is presented in section 8.1 and further

research is suggested in section 8.2.

8.1 Conclusion

Application of AR to cultural heritage is a fascinating research topic. It allows

preserving the original building structures, already subject to wear and tear over

hundreds of years, and provide an entertaining way of learning their history by

seeing the original building structures instead of ruins.

293
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Apart from creating accurate models of the ancient buildings, the most im-

portant part in developing such applications is performing the user tracking (i.e.

finding their position and orientation in the environment) accurately.

An initial attempt to solve this problem was using a popular visual SLAM

algorithm from the robotics community, as described in chapter 4. Indoor exper-

iments (small environment, such as a desktop) have shown satisfactory accuracy

but the method was not able to perform tracking in an outdoor environment.

Several approaches were tried to overcome this problem; however, results were

not at all satisfactory.

The keyframe based localization algorithm presented in chapter 4 used two-

view geometry to estimate the motion of the user and achieved more promising

results in terms of tracking. This method was able to track the overall motion

but missing some fine details due to vision processing.

Considering the operation in outdoor environments, the aid of the GPS and

IMU sensors was exploited in a sensor fusion framework in order to achieve more

accurate tracking results in chapter 6. The sensor fusion algorithm combined the

position and rotation measurements from the camera, GPS and IMU to produce

a single estimate for the user pose. The additional data processing did not add

to the computation time; indeed, it was reduced due to the design making use of

multiple threads.

A further improvement was achieved in chapter 6 where a fuzzy rule-base was

employed to find the motion model for the Kalman filter that best fits the actual

measurements coming from the sensors. This allowed the system to capture the

motion of the user more accurately for cases where he or she walks at varying

speeds or stands, an important feature for a user walking around an ancient site

and frequently stopping to examine the ruins.
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The recently launched Kinect sensor was also exploited for both tracking the

user, using its skeleton-tracking capabilities, and finding the camera position using

natural features, using its depth sensor, in the environment for in situ augmen-

tation as described in chapter 5. Such a setup deployed in exhibits will obviously

improve the visiting experience in museums.

Using the user tracking system for outdoor environments of chapter 6 as well

as the camera motion estimation and user tracking features of the Kinect sensor

in chapter 5, three applications were presented in chapter 7. The first one was for

viewing ancient columns augmented over natural features and augmenting users

with clothing from ancient ages. The second application allowed the user to view

a model of a State Agora and walk around it. The final application was a simple

AR game in which the user has to collect all the reward items (coins and chests)

in the same context as the second application.

Since vision processing is used in all of the user tracking algorithms presented

in the thesis and homography estimation plays a crucial role in almost all similar

vision related applications, a new measure for calculating coverage of the image

features (which is known to affect the accuracy of the estimated homography)

is presented in chapter 3. This measure used a robust metric that analyses the

distribution of features across the image. A dozen feature detectors were evalu-

ated and the effect of coverage was also demonstrated in a simple image-stitching

application.

Azuma stated in 1997 that AR tracking for outdoors in real-time with required

accuracy is an open problem [143]. Though more than a decade has passed after

his statement, this problem still keeps its validity since AR requires high accuracy,

low latency and low jitter [144]. Similarly in [192], it was stated that there was a

great need for a self-tracker that can be used in natural outdoor environments as
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well; however, a robust implementation of such a tracker was years away due to

the challenges in finding robust features in natural environments [3].

The author believes that using the current processing power of mobile sys-

tems (e.g. a next-generation Raspberry Pi1), techniques (e.g. multiple cores) and

sophisticated algorithms (e.g. fuzzy adaptive filtering) making use of several sen-

sors, we are much closer to seeing applications following the “Total Augmentation”

paradigm presented in chapter 1.

8.2 Future Work

The contributions presented in this thesis are as open to further improvement as

any other piece of research. A number of directions will provide a general outline

for future research. These can be listed as:

• A 3D feature can provide 4 measurements when its projection is used for

two images (feature point correspondences between keyframes in chapter 4).

The use of the tri-focal tensor [329] (using correspondences between three

keyframes) can be investigated since this can provide 6 measurements per

feature which can compensate for errors [31], though this approach is more

computationally expensive.

• The fuzzy rule-base defined in chapter 6 currently has 81 rules in order to

cover all possible transitions between different motion models. Although

these rules are accessed efficiently since a direct mapping is used in the

implementation, a further improvement can be achieved using rule reduc-

tion [127] to overcome the exponential growth of the rule-base, which is

1http://www.raspberrypi.org/

http://www.raspberrypi.org/
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regarded as a weakness of fuzzy logic based systems.

• The AR application presented in chapter 7 can display a large ancient build-

ing along with a simple game making the application more interesting. This

can be further improved by creating an animated/live environment using the

AR agents presented [4] in order to provide information in cultural heritage

context.

• The user tracking system of chapter 6 is designed for a single user but can

be extended to a group tracking system in a leader-follower scenario, such

as a tourist group guided by a tour guide. This may be used to distribute

the processing over multiple users and provide better accuracy following the

system designed for robots in [330].

• Genetic Programming (GP) [331] can be used to refine the output of a

feature detector so that the resulting set of feature points can yield a more

uniform coverage across the image according to the measure defined in chap-

ter 3.

–The End–
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