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Abstract

This paper describes a design methodology for constructing machine vision systems.

Central to this is the use of empirical design techniques and in particular quantitative
statistics. The approach views both the construction and evaluation of systems as one and

is based upon what could be regarded as a set of self-evident propositions;

• Vision algorithms must deliver information allowing practical decisions regarding

interpretation of an image.

• Probability is the only self-consistent computational framework for data analysis,

and so must form the basis of all algorithmic analysis processes.

• The most effective and robust algorithms will be those that match most closely the
statistical properties of the data.

• A statistically based algorithm which takes correct account of all available data will

yield an optimal result. 1.

Machine vision research has not emphasised the need for (or necessary methods of)
algorithm characterisation, which is unfortunate, as the subject cannot advance without

a sound empirical base. In general this problem can be attributed to one of two factors;

a poor understanding of the role of assumptions and statistics, and a lack of appreciation
of what is to be done with the generated data.

The methodology described here focuses on identifying the statistical characteristics of

the data and matching these to the assuptions of the underlying techniques. The method-
ology has been developed from more than a decade of vision design and testing, which

has culminated in the construction of the TINA open source image analysis/ machine
vision system [htt://www.tina-vision.net].

1 Background

Attempting to solve vision problems of any real complexity necessitates, as in other engineer-

ing disciplines, a modular approach (a viewpoint popularised as a model for the human vision

system by David Marr [18]). Therefore most algorithms published in the machine vision lit-

erature attend to only one small part of the “vision” problem, with the implicit intention that

the algorithm could form part of a larger system What follows from this is that bringing these

1Where the definition of optimal can be unambiguously defined by the statistical specification of the problem.
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together as components in a system requires that the statistical characteristics of the data

generated by one module match the assumptions underpinning the next.

In many practical situations problems cannot be easily formulated to correspond exactly to

a particular computation. Compromises have to be made, generally in assumptions regarding

the statistical form of the data to be processed, and it is the adequacy of these compromises

which will ultimately determine the success or failure of a particular algorithm. Thus, un-

derstanding the assumptions and compromises of a particular algorithm is an essential part

of the development process. The best algorithms not only model the underlying statistics of

the measurement process but also propagate these effects through to the output. Only if this

process is performed correctly will algorithms form robust components in vision systems.

2 Technology and Scenario Evaluation

The evaluation of vision systems cannot be separated from the design process. Indeed it

is important that the system is designed for test by adopting a methodology within which

performance criteria can adequately be defined. When a modular strategy is adopted, system

testing can be usefully considered as a two stage process [21] ;

• the evaluation of the statistical distributions of the data and comparison with algorith-

mic assumptions in individual modules; technology evaluation,

• the evaluation of the suitability of the entire system for the solution of a particular type

of task; scenario evaluation.

The process of scenario evaluation is often time consuming and not reusable. The process

of technology evaluation is complex and involves multiple objectives, however the results

are reusable for a range of applications. It therefore merits effort and should be attempted.

Ideally, we would like to be able to specify a limited set of summary variables which define

the requirements of the input data and the main characteristics of the output data, in a man-

ner similar to an electronic component databook. However, it must be remembered that it

is the suitability of the output data for use in later modules which defines performance, and

in some circumstances it may not be easy (or even possible) to define performance indepen-

dent of practical use of the data. For instance, problems can arise when the output data

of one algorithm is to be fed into several subsequent algorithms, each having different or

even conflicting requirements. The most extreme example of this is perhaps scene segmen-

tation where, in the absence of a definite goal, a concise method for the evaluation of such

algorithms is likely to continue to be a challenge [26].

Machine vision research has not emphasised the need for (or necessary methods of) al-

gorithm characterisation. This is rather unfortunate, as the subject cannot advance without

a sound empirical base [12]. In our opinion this problem can generally be attributed to one

of two main factors; a poor understanding of the role of assumptions and statistics; and a

lack of appreciation of what is to be done with the generated data. The assumptions behind

many algorithms are rarely clearly stated and it is often left to the reader to infer them2. The

failure to present clearly the assumptions of an algorithm often leaves the reader confused as

to the novel or valid aspects of the published research and can give the impression that it is

2A process we have previously called “inverse statistical identification” an allusion to the analogous problem

of system identification in control theory.
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possible to create good algorithms by accident rather than design. In addition, the inability

to match algorithms to tasks may lead those who require practical solutions to real problems

to conclude that little (if anything) published in this area really works. When in fact, virtually

all published algorithms can be expected to work, provided that the input data satisfy the

assumptions implicit in the technique. It is the unrealistic nature of these assumptions (e.g.

noise free data) which is more likely to render algorithms useless.

The following is a description of a methodology for the design of vision module com-

ponents. This methodology focuses on identifying the statistical characteristics of the data

and matching these to the assumptions of particular techniques. The methods given in the

appendices have been drawn from over a decade of vision system design and testing, which

has culminated in the construction of the TINA machine vision system [29]. These include a

combination of standard techniques, (such as covariance estimation and error propegation)

and less standard ones (such as modal arithmetic, equal variance transforms and optimal fu-

sion of hypothesis tests) which we have developed to address specific problems in algorithm

design. Other techniques, more specific to evaluation of matching and classification, such as

reciever operator curves and algorithmic modelling [34], are beyond the scope of this paper.

3 A Methodology Based on Quantitative Statistics

There are several common models for statistical data analysis, all of which can be related at

some stage to either the principle of maximum likelihood or hypothesis tests. The likelihood

framework provides methods for the estimation and propagation of errors, which are essen-

tial for characterising data at all stages in a system. Likelihood based approaches begin by

assuming that the data under analysis conforms to a particular distribution. This distribution

is used to define the probability of the data given an assumed model (appendix A). Hypoth-

esis tests are based upon the probability that data drawn from the model would be less like

that which has been observed (appendix F). The following sections discuss the checks that

must be made on data in order to use these approaches properly.

3.1 Input data

The first step in evaluating an algorithmic module is identification of the appropriate model

and empirical confirmation of the distribution with sample data. Appropriate methods for this

task include; correlation analysis, histogram fitting and the Kolmogorov-Smirnov test [28].

The interpretation of the results from such processes require knowledge of the consequences

of deviation from the expected distribution. In general, the greatest problems are caused

by outliers (see below) although, the closer the data distributions conform to the assumed

model, the better the expected results. Assumptions which prove valid for one algorithm, can

often prove useful in the design of new algorithms. Some distributions commonly used in the

machine vision literature are listed in table 1.

Although there are no general restrictions on the shape of these distributions the most

common are Gaussian, Binomial, Multinomial and Poisson. These correspond to commonly

occurring data generation processes. The central limit process ensures that the assumption

of Gaussian distributed data forms the basis of many algorithms. This leads to tractable

algorithms as the log-likelihood formulation of a Gaussian assumed model takes the particu-

larly simple form of a least-squares statistic, which can often be formulated as a closed form
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Example Task Data Error Assumption

Basic Data Images Uniform random Gaussian

Statistical Analysis Histograms Poisson sampling statistics

Shape Analysis Edge location Gaussian perpendicular to edge

Line fits Uniform Gaussian on end-points

Motion Corner features Circular (Elliptical) Gaussian

3D Objection Location Stereo data Uniform in disparity space

Table 1: Standard error model assumptions.

solution (appendix A). It is therefore useful to know that certain non-linear functions will

transform the other common distributions to a form which approximates a Gaussian with

sufficient accuracy to enable least-squares solutions to be employed (appendix D).

Unfortunately, most practical situations generate data with long tailed distributions (out-

liers). The problems associated with outliers in data analysis are well known. However, what

appears less well understood is the reason for the complete lack of closed form solutions

based upon a long tailed distribution. By definition only a simple quadratic form (or mono-

tonic mapping thereof) for the log-likelihood, can be guaranteed to have a unique minimum.

Long tailed (non-Gaussian) likelihood distributions inevitably result in multiple local minima

which can only be located by explicit search (e.g. the Hough transform) or optimisation (e.g.

gradient descent).

Other assumptions in the likelihood formulation generally include those of data indepen-

dence. Independence can be confirmed by plotting joint distributions. Uncorrelated data will

produce joint distributions which are entirely predicted by the outer product of the marginal

distributions. Correlations (the lack of independence) in data can have several consequences.

Strong correlations may produce suboptimal estimates from the algorithm and covariances

may not concisely describe the error distribution. Data correlation can be elimiated using

techniques such as Principle Component Analysis (PCA), Independent Component Analysis

(ICA) or counter-propagation neural networks.

3.2 Output data

The next step in module analysis is to estimate the errors on the output data. If the out-

put is the result of a log-likelihood measure then errors can be computed using covariance

estimation (appendix B). Covariance estimation is possible even in the presence of outliers,

provided that a robust kernel is used [19]. If the output quantities from a module are com-

puted from noisy data the errors on the results can be calculated using error propagation

(appendix C). Both of these theoretical techniques assume Gaussian distributed errors and

locally linear behaviour of the algorithmic function.

These assumptions require validation (i.e. checks to ensure that the theory is an accu-

rate representation of reality), which can be achieved using Monte-Carlo approaches. Once

again, techniques such as histogramming, fitting and Kolmogorov-Smirnov tests are useful.

High degrees of non-linear behaviour can be addressed using a technique we call modal arith-

metic [35] (appendix E). Non-linear transformation of estimated variables may be necessary

in order to make better approximations to Gaussian distributions. It may also be necessary

to combine variables in order to eliminate data correlation. Selecting data representations
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which provide appropriate descriptions of statistical distributions is of fundamental impor-

tance 3. The definition of the parameters passed between algorithms can be substantially

different to naive expectation e.g. 3D data from a stereo algorithm is best represented in

disparity space (appendix D). Notice, the evaluation process has a direct influence on the

process of system design, underscoring the earlier statements that system design and perfor-

mance evaluation cannot (and should not) be treated separately.

In many cases the division of tasks into modules will be driven by the statistical character-

istics of the processed data and cannot be specified a priori without a very clear understand-

ing of the expected characteristics of all system modules. Given the source of data typical

of machine vision applications it is also very likely that algorithms will produce outlier data

which cannot be eliminated by transformation or algorithmic improvement and will therefore

require appropriate (robust) statistical treatment in later modules.

A rigid application of the above design and test process (see figure 1) will produce veri-

fiable optimal outputs from each module. Ultimately however, we will need to know if this

data is of sufficient quality to achieve a particular task, a process we will call scenario evalu-

ation. Under many circumstances it should be sufficient to determine the required accuracy

of the output data in order to achieve this task. Alternatively, the covariance estimates from

the technology evaluation could be used to quantify the expected performance of the system

on a per-case basis.

Statistical measures of performance can be obtained by testing on a representative set of

data. We would anticipate the need to compute the probability of a particular hypothesis,

either as a direct interpretation of scene contents or as the likely outcome of an action (ap-

pendix F). Such probabilities are directly testable and can be described as honest probabilities

[10] only if they agreee with the true frequency of occurence of events, (e.g. classification

probabilities P (C|data) should be wrong 1 − P (C|data) of the time). Tested hypotheses,

such as a particular set of data being generated by a particular model, should have a uniform

probability distribution. The importance of this feature in relation to the work presented

here is that knowledge of the expected distribution for the output provides a mechanism for

self-test. Some approaches to pattern recognition, such as k-nearest neighbours, are almost

guaranteed to be honest by construction. In addition the concept of honesty provides a very

powerful way of assessing the validity of probabilistic approaches. In [24] it was shown that

iterative probabilitstic update schemes which drive probability estimates to converge to 0 or

1 cannot be honest and are therefore also not optimal.

An algorithm which makes use of all available data in the correct manner must deliver an

optimal result. This is not as uncommon occurrence in computer vision as may be assumed

and many problems (camera calibration [30], and shape recognition [31]) do have optimal

solutions. If this can be established for an algorithm then extensive evaluation (e.g. on a

large number of images) can be expected to prove only one thing, that the algorithm can only

be bettered by one which takes account of more data or assumes a more restricted model.

Use of a more restricted model will of course limit use of the algorithm, and any assumption

which prevents the generic use of an algortihm needs to be considered very carefully. It is all

to easy to design algorithms which work (at least qualitatively) on a very limited subset of

images and this is a criticism which is often made of work in this area. Using more informa-

tion rather than assumptions to solve the problem might therefore be the preffered option.

In a modular system, where input data has been separated in order to make data processing

3yet is often overridden by preconceived ideas of algorithm design.
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more manageable, use of more data corresponds to fusion of output data. For this reason

quantitative methods of optimal data combination are of fundamental importance. Within

the probabilistic framework described above there are three ways of achieving this; combi-

nation of probability (using a learning technique such as a neural network), combination of

likelihoods (using covariances), and combination of hypothesis tests. All three of these are

described in greater detail in appendix G.

4 The TINA 3D Model Matching System

We can illustrate the quantitative statistical methodology presented here with the example of

the wireframe object location system in TINA. The original version of the 3D model matcher

was presented in [22] and [23]. Briefly the system used a sparse edge based depth map

extracted from pairs of binocular stereo images together with the corresponding camera cali-

bration information. A geometric interpretation of the scene was constructed by fitting lines

and arcs to the depth map data. Statistical matching of 3D scene descriptions to a stored

wireframe model enabled the location of the model within the scene to be identified. Each

of these stages involve maintaining a model of data accuracy so that the assumptions made

at each stage are consistent with the input data provided. Unfortunately, accurate determi-

nation of object location in the later stages is not possible with this simple scheme as many

of the assumptions necessary to construct a working system are often violated. In particular,

illumination artifacts and shadowing often move features from their expected position or in-

troduce new ones. These effects, combined with a least-squares estimation of object location,

guarantees problems with resulting output so that results at this stage are not fully quantita-

tive. The closed loop validation stage (CLV) [15] closes the loop on the process, testing the

generated hypothesis against the original image data and refining this estimate without the

constraints imposed by the previous algorithmic stages (Table 2). The CLV used an iterative

robust approach which deals appropriately with outliers, thereby regaining a sub-pixel accu-

rate estimate of object pose. Formulation within the appropriate likelihood framework also

raises the possibility of the computation of covariances on transformation parameters, which

we would expect to be necessary in any working system. Figure 2 outlines how the CLV stages

(dashed lines) compliments the model matcher (solid lines).

5 Summary and Conclusions

This document suggests a quantitative statistical approach to the design and testing of ma-

chine vision systems which could be considered as an extension of methodologies suggested

by other authors [3, 13]. We have focused on the use of likelihood and hypothesis testing

paradigms and it would be natural for a reader familiar with the machine vision literature to

feel that we have missed out other approaches which have (or have had) a higher profile in

the literature (e.g. computational geometry and image analysis as inverse optics). However,

we would argue that for the modular approach to system building to succeed we must have

appropriate control over the statistical distributions generated during analysis. Inevitably, to

acquire quantitative data for use in a system, error analysis will be required. This is pos-

sible with likelihood based techniques because they enable the construction of measures to
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Key Purpose Algorithms Assumptions

A Edge & Corner Detection Canny [7] Edges present in expected locations

2D Geometry Fitting Curves and lines can be correctly

linked and fitted

B Stereo Matching PMF Accurate epi-polar geometry

and match metrics

3D Geometry Fitting GDB Accurate camera calibration

C Sequential Model Building GEOMstat Accurate feature locations

D Wireframe Model SMM Gaussian errors on all extracted

Matcher features

Closed form solution is appropriate

E Camera Calibration Tsai [36] Known calibration object present

Table 2: Algorithmic descriptions and assumptions for the 3DMM with key for shaded com-

ponents in figure 2.

determine the best interpretation of the data (such as least squares) and also allow quanti-

tative predictions to be made of the stability of estimated parameters (such as covariances).

The machine vision problem, therefore, does not stop once a closed form solution is found

(see [14] for a discussion of the use of statistics in closed form solutions). This difficult step

is often missing in the work found in the literature, yet attempting to do it can completely

alter our understanding of the apparent value or even validity of the approach. The work of

Maybank [17] demonstrated exactly this point with regard to the use of affine invariants for

object recognition.

The reader may at this point feel that there is a broader context for probability theory

than likelihoods and hypothesis testing. In particular likelihood based techniques have well

known limitations, such as bias in finite samples [9]. The problem of model selection is

endemic in the machine vision area and likelihoods cannot be directly compared between

two different model hypotheses. Approaches which aim to directly address these issues are

thus acceptable extensions to the above methodology [32]. However, some popular areas

of probability theory do not (at least yet) have comparable quantitative capabilities (e.g.

Bayesian approaches) and may therefore be unsuitable for system building. We have made

an attempt to summarise these issues in [5]. It remains to be seen whether advocates of these

approaches and others (such as Dempster-Schafer theory) are able to address these issues.

Other approaches to algorithm design use methods which are based upon apparently dif-

ferent principles, such as entropy and mutual information [37]. However, we regard these as

only alternative ways to formulate problems and believe that most experienced researchers

would accept that all approaches should be reconcilable with probability theory. Thus if there

already exists a likelihood based formulation of the technique, this should be taken as the

preferred approach. Obviously, if the research community as a whole accepted this viewpoint

many papers would already have been written and presented differently. As the construction

of systems from likelihood based formulations is generally likely to require optimisation of ro-

bust statistics, generic algorithms for the location of multiple local optima should be regarded

as a fundamental research issue. So too should the problem of covariance estimation from

common optimisation tasks and popular algorithmic constructs, (such as Hough transforms),
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which have already been shown to be consistent with likelihood approaches [27, 1].

Many attempts at algorithmic evaluation in the literature focus on the specification of

particular performance metrics. Although these metrics may give some indication as to the

basic workings of an algorithm, quantitative evaluation should set as the ultimate goal an

understanding of the performance of the system. Performance metrics for modules should

therefore be specified with this in mind.

Non-quantitative evaluation is probably of more use in the early stages of algorithm con-

struction than during the final integration into a system. However, in the methodology de-

scribed a key aspect is the identification of assumptions. Knowledge of these assumptions

(and suitable methods for determining their validity) allows comparisons of algorithms to

be carried out at the theoretical level. Also, we should not be surprised when algorithms

which are built upon the same set of founding assumptions within a sensible probabilistic

framework, give near identical performance. This has been well illustrated in several pieces

of work including that by Fisher et. al [11], where alternative techniques for location of

3D models in 3D range data were found to give equivalent results to within floating point

accuracy. If careful statistical analysis of data did not give this result then it would be an

indication that probability theory itself was not self-consistent. Also, when performing com-

parative testing of modules we should be aware that algorithmic scope, as determined by

the restrictions imposed by the assumptions, should be taken into account in the final inter-

pretation of results. Algorithms which give apparently weaker performance on the basis of

performance metrics may still be more applicable for some tasks. A simple example of this is

that least squares fitting will generally give a better bounded estimate of a set of parameters

than robust techniques, yet robust techniques are essential in the presence of outliers.

A Common Likelihood Formulations

Maximum Likelihood statistics involves the identification of the event Y which maximises a

probability of the form

P (X0X1X2...Xn|Y )P (Y ) = P (X0|X1X2...XnY )P (X1|X2...XnY )......P (Xn|Y )P (Y )

where Xi are the observed data. For large numbers of variables this is an impractical method

for probability estimation. Even if the events were simple binary variables there are clearly an

exponential number of possible values for even the first term in P (XY ) requiring a prohibitive

amount of data storage. In the case where each observed event is independent of all others

we can write.

P (X|Y ) = P (X0|Y )P (X1|Y )P (X2|Y )...P (Xn|Y )

The rather redundant use of the conditional terms |Y is often dropped for convenience. A

more detailed treatment of the theory and techniques of Maximum Likelihood statistics can

be found in [9].

Dealing with Binary Evidence

The simplest likelihood model is for binary observations of a set of variables with known

probabilities. If we make the assumption that the event Xi is binary with probability P (Xi)
then we can construct the probability of observing a particular binary vector X as:
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P (X) = Πi(P (Xi)
Xi(1 − P (Xi))

(1−Xi)

The log likelihood function is therefore

log(P ) =
∑

i

Xilog(P (Xi)) + (1 − Xi)log(1 − P (Xi))

This quantity can be minimised or directly evaluated in order to form a statistical deci-

sion regarding the likely generator of X. This is therefore a useful equation for methods of

statistical pattern recognition.

Poisson and Gaussian Data Distributions

A very common problem in machine vision is that of determining a set of parameters in a

model. Take for example a set of data described by the function f(a, Yi) where a defines

the set of free parameters defining f and Yi is the generating data set. If we now define the

variation of the observed measurements Xi about the generating function with some random

error we can see that the probability P (X0|X1X2...XNaY0) will be equivalent to P (X0|aY0)
as the model and generation point completely define all but the random error.

Choosing Gaussian random errors with a standard deviation of σi gives;

P (Xi) = Aiexp(
−(Xi − f(a, Yi))

2

2σ2
i

)

where Ai is a normalisation constant. We can now construct the maximum likelihood

function;

P (X) = ΠiAiexp(
−(Xi − f(a, Yi))

2

2σ2
i

)

which leads to the χ2 definition of log likelihood;

log(P ) =
−1

2

∑

i

(Xi − f(a, Yi))
2

σ2
i

+ const

This expression can be maximised as a function of the parameters a and this process is

generally called a least squares fit. Whenever least squares is encountered there is implicit

assumption of independence and of a Gaussian distribution. In practical situations the validity

of these assumptions should be checked by plotting the distribution of Xi − f(a, Yi) to make

sure that it is Gaussian.

Often when working with measured data we need to interpret frequency distributions of

continuous variables, for example in the form of frequency histograms. In order to do this

we must know the statistical behaviour of these measured quantities. The generation process

for a histogram bin quantity (making an entry at random according to a fixed probability)

is strictly a multi- distribution, however for large numbers of data bins this rapidly becomes

well described by the Poisson distribution. The probability of observing a particular number

of hi for an expected probability of pi is given by;
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P (hi) = exp(−pi)
pk

i

hi!

For large expected numbers of entries this distribution approximates a Gaussian with σ =√
hi. These facts allow us to see that the standard χ2 statistic is appropriate for comparing

two frequency distributions hi and ji for equal sized samples;

χ2 =
∑

i

(hi − ji)
2/(hi + ji)

However, this is not necessarily the best way to analyse such data [33].

B Covariance Estimation

The concept of error covariance is very important in statistics as it allows us to model lin-

ear correlations between parameters. For locally linear fit functions f we can approximate

the variation in a χ2 metric about the minimum value as a quadratic. Starting from the χ2

definition as a least squares formulation using the same notation as previously;

χ2 =
1

2

N
∑

i

(Xi − f(Yi, a))2

σ2
i

We can compute the first and second order derivatives as follows;

∂χ2

∂an

=
N

∑

i

(Xi − f(Yi, a))

σ2
i

∂f

∂an

∂2χ2

∂an∂am

=
N

∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am

− (Xi − f(yi, a))
∂2f

∂an∂am

)

The second term in this equation is expected to be negligible compared to the first and

with an expected value of zero if the model is a good fit. Thus the cross derivatives can be

approximated to a good accuracy by;

=
N

∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am

)

The following quantities are often defined;

βn =
1

2

∂χ2

∂an

αnm =
1

2

∂2χ2

∂an∂am

As these derivatives must correspond to the first coefficients in a polynomial (Taylor)

expansion of the χ2;

C = α−1 where α =
α11 α12 . . .
α21 α22 . . .
. . . . . . αnm

And the expected change in χ2 for a small change in model parameters can be written as

∆χ2 = ∆aT α∆a.
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Process Calculation Theoretical Error

Addition O = I1 + I2 ∆O2 = σ2
1 + σ2

2

Division O = I1
I2

∆O2 =
σ2

1

I2

2

+
I2

1
σ2

2

I4

2

Multiplication O = I1 . I2 ∆O2 = I2
2σ2

1 + I2
1σ2

2

Square-root O =
√

(I1) ∆O2 =
σ2

1

I1

Logarithm O = log(I1) ∆O2 =
σ2

1

I2

1

Polynomial Term O = In
1 ∆O2 = (nIn−1

1 )2σ2
1

Table 3: Error Propagation in Image Processing Operations

C Error Propagation

In order to use a piece of information f(X) derived from a set of measures X we must have

information regarding its likely variation. If X has been obtained using a measurement sys-

tem then we must be able to quantify the precision of this system. Therefore, we require a

method for propagating likely errors on measurements through to f(X). Assuming knowl-

edge of error covariance this can be done as follows;

∆f(X) = ∇fTCX∇f

The method simply uses the derivative of the function f as a linear approximation to that

function. This is sufficient provided that the expected variation in parameters ∆X is small

compared to the range of linearity of the function. Application of this technique to even sim-

ple image processing functions gives useful information regarding the expected stability of

each method (Table 3). When constructing algorithms from such image processing modules

any data dependency will produce problems with noise stability unless the errors are prope-

gated fully for later use [8]. When the problem does not permit algebraic manipulation in

this form (due to significant non-linear behaviour in the range of ∆f(X) or functional discon-

tinuities) then numerical (Monte-Carlo) approaches may be helpful in obtaining the required

estimates of precision.

D Transforms to Equal Variance

The choice of a least squares error metric gives many advantages in terms of computational

simplicity and is also used extensively for definitions of error covariance and optimal combi-

nation of data (Appendices B and G ). However, the distribution of random variation on the

observed data X is something that generally we have no initial control over and could well

be arbitrary and so we have the problem of adjusting the measurements in order to account

for this. In addition, we have the problem that different choices for the way we represent

the data will produce different likelihood measures. Take for example a set of measurements

made from a circle, we can choose to measure the size of a circle as a radius or as an area.

However, it can be easily shown that constructing a likelihood technique based upon sampled
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distributions will produce different (inconsistent) formulations for these two representations

of the same underlying data. Transferrring the likelihood from a distribution of radial errors

will not produce the impirically observed distribution for area due the non-linear transfor-

mation between these variables. Which should we choose as correct (or are both wrong)?

Initially these may be seen as separate problems, but in fact they are related and may have

one common solution. To understand this we need to consider non-linear data transforma-

tions and the reasons for applying them.

In many circumstances it is possible to make distributions more suitable for use of stan-

dard ML formulations (eg: least squares) by transformation g(Xi) and g(f(a, Yi)), where g
is chosen so that the initial distribution of Xi maps to an equal variance distribution (near

Gaussian) in g. Examples of this for statistical distributions are the use of the square-root

transform for Poisson distributed variables [33] and the asin mapping for binomial dis-

tributed data. However, this problem can occur more generally due to the need to have to

work with quantities which are not measured directly.

One good example of this is in the location of a known object in 3D data derived from

a stereo vision system. In the coordinate system where the viewing direction corresponds to

the z axis, x and y measures have errors determined by image plane measurement. However,

the depth zi for a given point is given by;

zi = fI/(Xli − Xri)

where I is the interocular separation, f is the focal length and Xli and Xri are image

plane measurements. Attempts to perform a least squares fit directly in (x, y, z) space results

in instability due to the non-Gaussian nature of the zi distribution. However, transformation

to (x, y, 1/
√

2z) yields Gaussian distributions and good results. In general, observation of a

dependency of the error distribution of a derived variable with that variable (in the above case

the dependency of σz on z), is very often a sign that the likelihood distribution is skewed. For

a known functional dependency h the transformation g which maps the variable Xi to one

with equal variance follows directly from the method of error propagation and is given by;

g =

∫

1

h(X)
dX

All of the transformations mentioned above can be generated from this process, including

those which map standard statistical distributions to more Gaussian ones, though the extent

to which this is a general property of this method is unclear. We are now also in a posi-

tion to answer our questions regarding data representation in ML. The selection of measured

variables from the equal variance domain provides a unique solution to the problem of iden-

tification of the source data space.

E Modal Arithmetic

Sometimes the effects of non-linear calculations on data with a noise distribution affects not

only the variance of the computed quantity but also the mean value. From a likelihood point

of view we can define the ideal result from a computation as the most frequent (or modal)

value that would have resulted from data drawn from the expected noise distribution. We

can find such values directly, via the process of Monte-Carlo, but we can also predict these
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values analytically. We have termed the algorithm design technique which addressed this

issue modal arithmetic [35]. The general method of modal arithmetic for a measured value

with distribution D(x) and a non-linear function f(x) would be to find the solution xmax of

∂[
D(x)

∂f(x)/∂x
]/∂x = 0

with the modal solution of f(xmax). Modal arithmetic is unconditionally stable, as peaks

in probability distributions cannot occur at infinity. It also has much similarity with some

approaches in statistics which advocate the use of the mode rather than the mean as the most

robust indicator of a distributed variable. In [35] we applied this technique to deconvolution,

as a complex division in the presence of noise, and were able to show that the resulting

solution regenerated the Wiener filter [38], without the need to assume a linear form for the

optimal filter.

F Hypothesis Testing

Having made quantitative measurements from our system we will ultimately need to make

decisions based upon those measurements in comparison to some predefined model. For

example, do not attempt to move the mobile vehicle through a doorway unless the vision

system estimates that it will pass. Many statistical tests are based on the idea of generating

the probability that data drawn from the expected test distribution would be more frequent

than the example under test. This approach leads to the common statistical techniques of

z-scores, T tests, and Chi-squared tests to name a few. This follows directly from the original

definition of a confidence interval, due to Neyman [20] and yet is rarely used in machine

vision. This is unfortunate, as the methods do not suffer the same restrictions regarding

distributions which apply to covariances.

Hypothesis tests (i.e. does the data conform to the assumed model?) are perfomed on the

basis of one model at a time, in contrast to Bayesian approaches which require all possible

generators (models) of the data. In addition, such statistical tests are fully quantitative.

Probabilities computed from such statistics have the characteristic that the distribution of

values drawn from the assumed model will be flat. This is useful as a mechanism for self

test. The most common form of this statistic is that for a Gaussian and is known as the

error function which is provided as a mathematical function in most languages (e.g. the

erf() library function). However, such statistics can be generated for any model for which

the expected data distribution is known, using the ordering principle. This states that the

ordering of integration along the measurement axis should be defined so that the probability

density is monotonically decreasing. For the Gaussian case shown above this gives the rather

trivial result that we integrate along the standard measurement axis x away from the peak,

as the function is monotonically decreasing from x = 0. Although this is not the only way to

order the data (there are potentialy infinite numbers of equivalent possible ordering schemes

depending upon how we define our variables e.g. x2) this is the one which gives confidence

limits which are maximally compact in the chosen parameter domain. Generally, the preferred

parameter domain would be selected as the space in which x was uniformly accurate, so that

this compactness has meaning from the point of view of measureable localisation. This is

sometimes referred to as a “natural” parameterisation and is related to the concept of the

equal variance transform (appendix D).
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In image processing the required distributions can often be bootstrapped directly from

the image (e.g. as in [6]). Under these circumstances the possibility of multi-modal density

functions makes the application of the ordering principle slightly less straightforward.

Finally, as the only requirement for the use of such probabilities is that they have a uniform

distribution, empirical approaches can be used to re-flatten distributions which result from

imprecise analysis. Such hypothesis tests are also easily combined using standard statistical

approaches (See appendix G).

G Data Fusion

Optimal Combination using Covariances

Given two estimates of a set of parameters a1 and a2 and their covariances (α1 and α2) we

can combine the two sets of data as follows;

aT = α−1
T (α1a1 + α2a2) with α−1

T = α−1
1 + α−1

2

This method combines the data in the least squares sense, that is the approximation to

the χ2 stored in the covariance matrices has been combined directly to give the minimum of

the quadratic form. The method can be rewritten slightly giving

aT = a1 + α−1
T α2∆a

where ∆a = a2 −a1. This form is directly comparable to the information filter form of the

Kalman filter.

Optimal Combination of Hypothesis Tests

Hypothesis test probabilities should have uniform distributions (if they are honest). Given n

quantities each having a uniform probability distribution pi=1,n, the product p =
∏n

i=1 pi can

be renormalised to have a uniform probability distribution Fn(p) using;

Fn(p) = p
n−1
∑

i=0

(− ln p)i

i!
(1)

Proof of this relationship can be generated in the following manner. The quantities pi

can be plotted on the axes of an n dimensional sample space, bounded by the unit hyper-

cube. Since they are uniform, and assuming no spatial correlation, the sample space will

be uniformly populated. Therefore, the transformation to Fn(p) such that this quantity has

a uniform probability distribution can be achieved using the probability integral transform,

replacing any point in the sample space p with the integral of the volume under the con-

tour of constant p. Generalisation of this process to non-integer numbers (which is useful for

cases where we have an effective number of degrees of freedom) and other useful results are

presented in [4].
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Optimal Combination from Example Data

When the area of neural networks re-emerged as a popular topic in the mid 80’s much was

claimed about the expected capabilities regarding flexibility, suitability for system identifica-

tion and robustness. Most of these claims were subsequently shown to be optimistic. How-

ever, one problem that neural networks are relatively good at is non-linear data fusion. A

neural network when trained on an appropriate form of data with the correct algorithm will

approximate Bayes probabilities as outputs.

The mathematics describing this process is given in [16] but a more intuitive argument

is as follows. Each input vector pattern X defines a unique point in input space. Associated

with each data point is the ideal required output, for example a binary output classification.

As the number of samples grows large the number of examples of data in the region of each

point also grows large. If training with a least squares error function the target output for

each point in pattern space will be the mean of local values. For a binary coding problem the

mean value is the Bayes probability of the model given the data.

Given P (A|B) and P (A|C) can we compute P (A|BC)? We can clearly solve this prob-

lem provided these probabilities are independent by simple multiplication. If however the

measures are correlated there is no standard statistical method for this process. This is unfor-

tunate as we would expect a modular (AI) decision system to need to solve this task. Stan-

dard neural network architectures trained in the standard way will however approximate

P (A|P (A|B)P (A|C)) for the reasons described above [2]. Provided that there is enough

information in the set of probabilities being fused to regenerate the original data the fusion

process will be able to achieve optimality.
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5. P.A. BROMILEY, M.L.J. SCOTT, M. POKRIĆ, A.J. LACEY AND N.A. THACKER, Bayesian and Non-

Bayesian Probabilistic Models for Magnetic Resonance Image Analysis, Submitted to Image and

Vision Computing, Special Edition; The use of Probabilistic Models in Computer Vision.

6. P.A.BROMILEY, N.A.THACKER AND P.COURTNEY, Non-Parametric Subtraction Using Grey Level

Scattergrams, BMVC 2000, Bristol, pp 795-804, Sept. 2000.

7. J F Canny. A computational approach to edge detection. IEEE PAMI, 8(6), 1986.

8. P. COURTNEY AND N.A. THACKER, Performance Characterisation in Computer Vision: The Role

of Statistics in Testing and Design, "Imaging and Vision Systems: Theory, Assessment and Ap-

plications", Jacques Blanc-Talon and Dan Popescu (Eds.), NOVA Science Books, 2001, ISBN

1-59033-033-1.

9. G. COWAN Statistical Data Analysis, Oxford University Press, ISBN 0-19-850156-0, 1998.

10. A.P. DAWID, Probability Forecasting, Encyclopedia of Statistical Science 7, pp 210-218. Wiley,

1986.

11. A. LORUSSO, D.W. EGGERT, AND R.B. FISHER, Estimating 3D Rigid Body Transformations: A

Comparison of Four Algorithms, Machine Vision Applications, 9 (5/6), 1997, pp.272-290.

12. W. FOERSTNER, 10 Pros and Cons Against Performance Characterisation of Vision Algorithms, Pro-

ceedings of ECCV Workshop on Performance Characteristics of Vision Algorithms, Cambridge,

UK, April 1996. Also in Machine Vision Applications, 9 (5/6), 1997, pp.215-218.

13. R.M. HARALICK, Performance Characterization in Computer Vision, CVGIP-IE, 60, 1994, pp.245-
249.

14. R.M. HARALICK, C.N. LEE, K. OTTENBERG AND M. NOELLE, Review and Analysis of Solutions

to the Three Point Perspective Pose Estimation Problem, Intl. J. Computer Vision, 13(3), 1994,

pp.331-356.

15. A.LACEY, N.A.THACKER, P.COURTNEY AND S.POLLARD, TINA 2001: The Closed Loop 3D Model

Matcher. proc. BMVC, 2001, pp203-212.

16. M.D.RICHARD AND R.P.LIPPMANN, Neural Network Classifiers Estimate Bayesian a Posterioi Prob-

abilities, Neural Computation,3,461-483,1991.

17. S.J. MAYBANK, Probabilistic Analysis of the Application of the Cross Ratio to Model Based Vision,

Intl. J. Computer Vision, 16, 1995, pp.5-33.

18. D. MARR, Vision: A Computational Investigation into the Human Representation and Processing of

Visual Information Publisher W. H. Freeman Company, NY 1982.

19. P. MEER, D. MINTZ, A. ROSENFIELD AND DONG YOOM KIM Robust Regression Methods for Coputer

Vision: A Review Intl. J. Computer Vision, 6:1, 1991, pp. 59-70.

20. J. NEYMAN, X-Outline of a Theory of Statistical Estimation Based on the Classical Theory of Proba-

bility, Phil. Trans. Royal Soc. London, A236, pp. 333-380, 1937.

21. P. J. PHILLIPS, A. MARTIN, C. L. WILSON AND M. PRZYBOCKI, An Introduction to Evaluating

Biometric Systems IEEE Computer Special Issue on Biometrics, pp. 56-63, Feb. 2000.

22. J Porill, S B Pollard, T Pridmore, J Bowen, J E W Mayhew, and J P Frisby. Tina: A 3d vision

system for pick and place. In Proceedings of the Alvey Vision Conference, 1987.

23. J Porill, S B Pollard, T Pridmore, J Bowen, J E W Mayhew, and J P Frisby. TINA: A 3D Vision

System for Pick and Place. MIT Press, 1991.

24. I. POOLE, Optimal Probabilistic Relaxation Labeling, Proc. BMVC 1990, BMVA, 1990.

25. W. H. PRESS, B. P., FLANNERY, S. A. TEUKOLSKY AND W. T. VETTERLING, Numerical Recipies in C

Cambridge University Press., 1991

16



26. G. REES, P. GREENWAY AND D. MORRAY, Metrics for Image Segmentation, Proceedings of ICVS
Workshop on Performance Characterisation and Benchmarking of Vision Systems, Gran Canaria,

January 1999.

27. R.S. STEPHENS, A Probabilistic Approach to the Hough Transform, British Machine Vision Confer-

ence BMVC90, 1990.

28. A. STUART, K. ORD AND S. ARNOLD Kendall’s Advanced Theory of Statistics Vol. 2A, Classical

Inference and the Linear Model, Sixth Edition, Arnold Publishers, 1999.

29. HTTP://WWW.TINA-VISION.NET/ TINA: Open Source Image Analysis Environment ISBE, University

of Manchester, UK

30. N A THACKER AND J E W MAYHEW, Optimal Combination of Stereo Camera Calibration from

Arbitrary Stereo Images Image and Vision Computing, Vol. 9 No. 1, pp. 27-32, 1991.

31. N.A.THACKER, P.A.RIOCREUX, AND R.B.YATES, ‘Assessing the Completeness Properties of Pair-

wise Geometric Histograms", Image and Vision Computing, 13, 5, 423-429, 1995.

32. N.A.THACKER, D.PRENDERGAST AND P.I.ROCKETT, B-Fitting: A Statistical Estimation Technique
with Automatic Parameter Selection.’,Proc, BMVC, pp 283-292, Edinburgh, 1996.

33. N.A.THACKER, F.AHEARNE AND P.I.ROCKETT, ‘The Bhattacharryya Metric as an Absolute Simi-
larity Measure for Frequency Coded Data.’ Kybernetika, 34, 4, 363-368, 1997.

34. P. COURTNEY, N.A.THACKER AND A.CLARK, Algorithmic Modelling for Performance Evaluation,
Machine Vision and Applications, 9, 219-288, 1997.

35. N.A.THACKER AND A.J.READER, Modal Division and its Application to Medical Image Analysis,
Proc. MIUA, pp 7-10, London. 10th-11th July, 2000.

36. R Y Tsai. An efficient and accurate camera calibration technique for 3d machine vision. In Proc.

IEEE CVPR 86, pages 364–374, 1986.

37. P. VIOLA, Alignment by Maximisation of Mutual Information M.I.T. PhD Thesis, 1995.

38. N. WIENER, Extrapolation, Interpolation and Smoothing of Stationary Time Series with an Ap-

pendix by N. Levinson Technology Press of the MIT and J. Wiley, New York, 1949.

17



Test Data
Available?

Failure

Standard
Distribution?

Yes

No

Transformation

Yes

No

Approx.
Gaussian?

Yes

Direct
Computation?

Yes

Statistical
Stability?

Yes

Independence?
No

Decorrelation
No

Log−Likelihood

Outliers?

Robust Statistics

Covariance Estimation

Iterative
Least Squares

Error Propagation

Yes

Yes

Valid
Covariances?

Closed Form
Solution?

No

Yes

Modal Arithmetic

Yes

Equal Variance 
Transform

No

No

No

No

Success

Yes

Subsequent module path

Bootstrap
Techniques

Figure 1: Technology evaluation flow chart. This diagram identifies the major design de-

cisions which must be addressed in order to deliver quantified outputs from an algorithm.

Transforms are suggested at various stages in order to solve problems associated with non-

Gaussian behaviour. The label Bootstrap is intended to refer to custom made statistical mea-

sures constructed from sample data.
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Figure 2: Block diagram of the updated 3D model matcher. The dashed sections represent

the additional processing of the closed-loop validation. The letters reference table 2
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Figure 3: Typical performance of the original 3DMM on an industrial component.
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