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The Need for Algorithmic Testing.

What about other fields of engineering ?

Algorithmic testing is necessary:

• to develop new approaches.

• to compare the performance of alternative al-

gorithms.

• to validate incremental modifications to algo-

rithms.

• for algorithmic system integration

– ROBUSTNESS

• an algorithm can only be used if it has been

evaluated. (when algorithms are used which

haven’t been evaluated it’s called research!).



The Conventional Approach to

Algorithmic Testing.

A simplification of the standard approach to algo-

rithm design implementation and testing is:

1. have an idea.

2. implement in software.

3. test on a small number (1-4) of images.

4. publish with test results as proof of concept.

5. go back to 1

Tuning parameters: Good vs bad practice

• What you see is not what you get.



Although this results in the rapid publication of

ideas it is a bad approach because:

• the algorithm is treated as a black box.

• displaying results as images rarely conveys any

statistically useful measure of performance.

• a small quantity of images is rarely a conclusive

demonstration of robustness.

• the method does not expose the assumptions

underlying the algorithm or the limitation on

application domain.

• the method does not help comparative analysis.

• if the idea really was any good, the work will

need to be done again.

Ref: Foerstner



Alternative Approaces to Algorithmic Testing.

It is now accepted by the majority of the machine

vision community that a more rigerous methodol-

ogy for testing is required (Ref: Haralick).

This methodology needs to be grounded in statis-

tics, both identifying and validating the statistical

assumptions used in the algorithm and in the eval-

uation process itself.

Due to the diversity of the subject area, several

approaches are probably going to be needed.



Alternative Approaces to Algorithmic Testing.

Alternatives are:

• test on more images.

• analytic evaluation eg:

– error propagation.

– Monte-Carlo.

• algorithmic modelling.

• software standardisation.



More Images.

Example of image registration.

(Ref: West and Fitzpatrick)

• Definition of metrics.

• Trials.

• Results: all about the same.

Some other successes:

• optical character recognition for US census

• face recognition for US Army (Ref: Phillips)



More Images.

BUT:

• how do we define the standard test set?

– not too easy

– not too hard

• logistical problems with acquiring the data.

– cost

– errors in the data

• robust algorithms require huge quantities of data.

– 99% reliability means 1% error rate

– 1% error rate means hundreds of test images

(Ref: Guyon on test set size)



More Images.

• a black box evaluation has limited prediction

capabilities.

• testing time grows exponentially with the num-

ber of tuning parameters.

• the timescales for evaluation are large, software

harnesses would help.

• Good vs bad practice: what you see is not what

you get.

• it’s very early days.



Software Standards.

What standards ?

• Existing tools eg manufacturer’s libraries

• IUE (image understanding environment)

• DICOM

• Baron and Fleet’s optical flow code

– ftp.csd.uwo.ca/pub/vision

• open source eg TINA

– TINA: www.niac.man.ac.uk/TINA



Conclusions.

• Rigorous approaches to testing exist but the

main obstacle may be psychological (Ref: Fo-

erstner).

• The biggest problems associated with evalua-

tion are associated with the time taken to per-

form the analysis. This precludes rapid publi-

cation rates.

• Evaluation work does not have the same appar-

ent standing in the field as, for example, new

ideas. (but this is changing)

• Unless algorithms are evaluated, in a manner

that can be used to predict the capabilities of a

technique on an arbitrary data set, it is unlikely

be successfuly reimplemented and used.

• The subject cannot advance without a scien-

tific methodology, which it will not have with-

out an acknowledged system for evaluation, char-

acterisation and the ability to reimplement al-

gorithms.
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Methodology.

• Vision algorithms must deliver information with

which to make practical decisions regarding in-

terpreting the data present in an image.

• Probability is the only self-consistent computa-

tional framework for data analysis.

• Probability theory must form the basis of all

statistical analysis processes.

• The most direct form of information regarding

an hypothesis is the posterior ( often condi-

tional) probability.

• The most effective/robust algorithms will be

those that match most closely the statistical

properties of the data.

• There are several common models for statisti-

cal data analysis all of which can be related at



some stage to the principle of maximum likeli-

hood.

• An algorithm which takes correct account of all

of the data will yield an optimal result.



Basic Definitions of Probability.

• P(A) probability of event A.

• P(Ã) = 1 − P(A) probability of non-event A.

• P(AB) probability of simultaneous events A and

B.

• P(A,B) joint probability of events A or B.

• P(A|B) probability of event A given event B.

• P(A|BC) probability of event A given events B

and C.

• P(A|B,C) probability of event A given events

B or C.

• P(A = B) probability of equivalence of events

A and B.

Warning: Expressions relating probabilities do not

reveal the assumptions with which these results

were derived.



Bayes Theorem.

The basic foundation of probability theory follows

from the following intuitive definition of conditional

probability.

P(AB) = P(A|B)P(B)

In this definition events A and B are simultaneous

an have no (explicit) temporal order we can write

P(AB) = P(BA) = P(B|A)P(A)

This leads us to a common form of Bayes Theory,

the equation:

P(B|A) = P(A|B)P(B)/P(A)

which allows us to compute the probability of one

event in terms of observations of another and knowl-

edge of joint distributions.



Maximum Likelihood

Starting with Bayes theorem we can extend the

joint probability equation to three and more events

P(ABC) = P(A|BC)P(BC)

P(ABC) = P(A|BC)P(B|C)P(C)

For n events with probabilities computed assuming

a particular interpretation of the data (for example

a model Y )

P(X0X1X2...Xn|Y )P(Y ) =

P(X0|X1X2...XnY )P(X1|X2...XnY )......P(Xn|Y )P(Y )



• Maximum Likelihood statistics involves the iden-

tification of the event Y which maximises such

a probability. In the absence of any other in-

formation the prior probability P(Y ) is assumed

to be constant for all Y .

• Even if the events were simple binary variables

there are clearly an exponential number of pos-

sible values for even the first term in P(XY )

requiring a prohibitive amount of data storage.

• In the case where each observed event is inde-

pendent of all others we can write.

P(Xn|Y ) = P(X0|Y )P(X1|Y )P(X2|Y )...P(Xn|Y )



Dealing with Binary Evidence.

If we make the assumption that the event Xi is bi-

nary with probability P(Xi) then we can construct

the probability of observing a particular binary vec-

tor X as

P(X) = ΠiP(Xi)
XiP(X̃i)

X̃i

or

P(X) = Πi(P(Xi)
Xi(1 − P(Xi))

(1−Xi)

The log likelihood function is therefore

log(P) =
∑

i

Xilog(P(Xi)) + (1 −Xi)log(1 − P(Xi))

This quantity can be or directly evaluated in order

to form a statistical decision regarding the likely

generator of X. This is therefore a useful equation

for methods of statistical pattern recognition.

eg:

X = (0,1,0, ...,1)

and

P(X) = (0.1,0.2.0.05, ...,0.9)



Dealing with Data Distributions.

• The generation process for a histogram, mak-

ing an entry at random according to a fixed

probability, is described by the Poisson distri-

bution.

The probability of observing a particular num-

ber of entries hi for an expected probability of

pi is given by

P(hi) = exp(−pi)
p
hi
i

hi!

• For large expected numbers of entries this dis-

tribution approximates a Gaussian with

σ =
√
pi

• The limit of a frequency distribution for an infi-

nite number of samples and bins of infinitesimal

width defines a probability density distribution.



These two facts allow us to see that the standard

χ2 statistic is appropriate for comparing two fre-

quency distributions hi and ji for large measures.

−2 log(P) = χ2 =
∑

i

(hi − ji)
2/(hi + ji)

ie:

e−log(P ) = Πie−χ
2
i /2



Dealing with Functions.

If we now define the variation of the observed mea-

surements Xi about the generating function with

some random error, the probability

P(X0|X1X2...XNaY0)

will be equivalent to P(X0|aY0).

Choosing Gaussian random errors with a standard

deviation of σi gives

P(Xi) = Aiexp(
−(Xi − f(a, Yi))

2

2σ2
i

)

where Ai is a normalization constant. We can now

construct the maximum likelihood function

P(X) = ΠiAiexp(
−(Xi − f(a, Yi))

2

2σ2
i

)

which leads to the χ2 definition of log likelihood

log(P) =
−1

2

∑

i

(Xi − f(yi))
2

σ2
i

+ const



• This expression can be maximized as a function

of the parameters a and this process is generally

called a least squares fit.

• Least squares fits are susceptible to fliers (out-

liers).

• The correct way to deal with these leads to the

methods of robust statistics.



Covariance Estimation.

For locally linear fit functions f we can approximate

the variation in a χ2 metric about the minimum

value as a quadratic. We will examine the two

dimensional case first, for example:

z = a+ bx+ cy+ dxy+ ex2 + fy2

This can be written as

χ2 = χ2
0+∆XTC−1

x ∆X with ∆X = (x−x0, y−y0)

where C−1
x is defined as the inverse covariance ma-

trix

C−1
x =

u v
w s

Comparing with the above quadratic equation we

get

χ2 = χ2
0 + x2u+ yxw+ xyv+ sy2

where

a = χ2
0, b = 0, c = 0, d = w+ v, e = u, f = s

Notice that the b and c coefficients are zero as re-

quired if the χ2 is at the minimum. (Ref : Haralick)



Starting from the χ2 definition using the same no-

tation as previously.

χ2 =
1

2

N
∑

i

(Xi − f(yi, a))
2

σ2
i

We can compute the first and second order deriva-

tives as follows:

∂χ2

∂an
=

N
∑

i

(Xi − f(yi, a))

σ2
i

∂f

∂an

∂2χ2

∂an∂am
=

N
∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am
− (Xi − f(yi, a))

∂2f

∂an∂am
)

The second term in this equation is expected to be

negligible giving

=
N
∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am
)

The following quantities are often defined.

βn =
1

2

∂χ2

∂an

αnm =
1

2

∂2χ2

∂an∂am



As these derivatives must correspond to the first

coefficients in a polynomial (Taylor) expansion of

the χ2 function then,

C = α−1

And the expected change in χ2 for a small change

in model parameters can be written as

∆χ2 = ∆aTα∆a



Error Propagation.

In order to use a piece of information f(X) derived

from a set of measures X we must have information

regarding its likely variation.

If X has been obtained using a measurement sys-

tem then we must be able to quantify measurement

accuracy.

Then

∆f2(X) = ∇fTCX∇f
example 1: the Poisson distribution s

t =
√
s

then we can show, using a simplified form of error

propagation for one parameter, that the expected

variance on t is given by

∆t =
∂t

∂s
∆s

=
−1

2

Thus the distribution of the square-root of a ran-

dom variable drawn from a Poisson distribution

with large mean will be constant.



example 2: Stereo Measurement (Demo Stereo)

Using rectified images, the distance, Z between the

feature and the camera plane can be found with the

equation:

Z =
fI

x1 − x2

where:

f is the focal length of the lenses

I is the inter-occular seperation

x1 and x2 are positions of the features on the epipo-

lars

We can determine the sensitivity of Z with changes

in x1 and x2 thus,

∆Z2 =

(

δZ

δx1
∆x1

)2

+

(

δZ

δx1
∆x2

)2

where,

δZ

δx1
= − fI

(x1 − x2)
2

and
δZ

δx2
=

fI

(x1 − x2)
2

∆x is the feature position error in the image and

can be assumed to be equal in each image, so

∆x1 = ∆x2 = ∆x



Solving for ∆Z yields the result,

∆Z =

√
2fI∆x

(x1 − x2)2
or w.r.t. Z, ∆Z =

√
2Z2∆x

fI

(Demo Matcher) Ref: Fisher.



example 3: Medical Image Co-registration.

The work of West et al. illustrates one of only a

few examples of a co-ordinated attempt to com-

pare algorithms.

The work involved getting numerous groups to co-

register test data sets while a central cite collated

the results.

While this is an important piece of work it has two

key failings;

• The choice of data sets is specific and finite.

• Results cannot be extended to other data sets.

In this case the use of covariance matricies may

have allowed the validation and reliability of algo-

rithms capable of prediciting their own accuracy on

any data.
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The Importance of Stability.

In simple image processing the requirements of an

image processing algorithm may be purely to en-

hance the image for viewing.

But; the aim of advanced image processing to pro-

duce an image that makes certain information ex-

plicit in the resulting image values for automated
data extraction.

eg: edge strength maps.

Generally, high values located over features of in-

terest. The process which determines a good al-

gorithm is its behaviour in the presence of noise,

in particular does the resulting image give results

which really can be interpreted purely on the basis

of output value.

ie: is a high value genuine or just a product of the

propagated noise.

In this lecture we will cover two ways of assessing

algorithms: Error Propagation and Monte-Carlo
techniques.



Designing Stable Feature Detectors.

Propegation through stable algorithm.

Propegation through un-stable algorithm.

F(I)

J(I) K(I) L(I)

H(I)G(I)

uniform errors uniform errors uniform errors

non-uniform errors really non-uniform maggots



Error Propagation.

General Approach for Error Propagation (Recap).

∆f2(X) = ∇fTCX∇f

where ∇f is a vector of derivatives

∇f = (
∂f

∂X1
,
∂f

∂X2
,
∂f

∂X3
, ....)

and ∆f(X) is the standard deviation on the com-

puted measure

If we apply this to image processing assuming that

images have uniform random noise then we can

simplify this expression to

∆f2
xy(I) =

∑

nm
σ2
nm(

∂fxy

∂Inm
)2

ie: the contribution to the output from each in-

dependent variance involved in the calculation is

added in quadrature.



Monte-Carlo Techniques.

Differential propagation techniques are inappropri-

ate when:

• Input errors are large compared to the range of

linearity of the function.

• Input distribution is non-Gaussian.

The most general technique for algorithm analysis

which is still applicable under these circumstances

is known as the Monte-Carlo technique.

This techniques takes values from the expected in-

put distribution and accumulates the statistical re-

sponse of the output distribution.

The technique requires simply a method of gen-

erating random numbers from the expected input

distribution and the algorithm itself.



Image Arithmetic.

We can drop the xy subscript as it is not needed.

Addition:

O = I1 + I2

∆O2 = σ2
1 + σ2

2

Division:

O = I1 / I2

∆O2 =
σ2
1

I22
+

I21σ
2
2

I42

Multiplication:

O = I1 . I2

∆O2 = I22σ
2
1 + I21σ

2
2



Square-root:

O =
√

(I1)

∆O2 =
σ2
1

I1

Logarithm:

O = log(I1)

∆O2 =
σ2
1

I21

Polynomial Term:

O = In1

∆O2 = (nIn−1
1 )2σ2

1



Square-root of Sum of Squares:

O =
√

I21 + I22

∆O2 =
I21σ

2
1 + I22σ

2
2

I21 + I22

Notice that some of these results are independent

of the image data. Thus these algorithms preserve

uniform random noise in the output image.

Such techniques form the basis of the most useful

building blocks for image processing algorithms.

Some however, (most notably multiplication and

division) produce a result which is data depen-

dent, thus each output pixel will have different

noise characteristics. This complicates the process

of algorithmic design.



Linear Filters.

For Linear Filters we initially have to re-introduce

the spatial subscript for the input and output im-

ages I and O.

Oxy =
∑

nm
hnmIx+n,y+m

where hnm are the linear co-efficients.

Error propagation gives:

∆O2
xy =

∑

nm
(hnmσx+n,y+m)2

for uniform errors this can be rewritten as

∆O2
xy = σ2

∑

nm
(hnm)2 = K σ2

eg: h = (−1,0,1) gives ∆O2 = 2σ2

Thus linear filters produce outputs that have uni-

form errors.



Unlike image arithmetic, although the errors are

unform they are no-longer independent because the

same data is used in the calculation of the output

image pixels. Thus care has to be taken when

applying further processing.

For the case of applying a second linear filter this

is not a problem as all sequences of linear filter

operations can be replaced by a combined linear

filter operation, thus the original derivation holds.



Histogram Equalisation.

For this algorithm we have a small problem as the

differential of the processing process is not well

defined.

If however we take the limiting case of the algo-

rithm for a continuous signal then the output image

can be defined as:

Oxy =

∫ Ixy

0
fdI/

∫ ∞

0
fdI

where f is the frequency distribution of the grey

levels (ie: the histogram).

This can now be differentiated giving

∂Oxy

∂Ixy
= K fIxy

ie: the derivative is proportional to the frequency of

occurrence of grey level value Ixy and the expected

variance is:

∆O2
xy = K σ2

xyf
2
Ixy



Clearly this will not be uniform across the image,

nor would it be in the quantized definition of the

algorithm.

Thus although histogram equalisation is a popular

process for displaying results (to make better use

of the dynamic range available in the display) it

should generally be avoided as part of a Machine

Vision algorithm.



Edge Detection.

Edge detection is a combination of operations and

the simplest approach to testing is likely to be

Monte-Carlo.

Canny was designed to combine optimal noise sup-

pression with location accuracy, but does this ac-

count for its stability?

The sequence of processing involves;

• convolution with the noise filter

(eg: ⊗ Gaussian)

• calculation of spatial derivatives

(eg: ⊗ (-1, 0, 1))

• calculation of edge strength

(eg:
√

(∇2
x + ∇2

y))

• thresholding and peak finding

The final stage will be reliable provided that we

have stability after the first three image processing

steps. (Demo: Edges)



Feature Detection Reliability.

Generally, when locating features, we are interested

in a limited set of performance characteristics.

• Position and orientation accuracy

• Detection reliability

• False Detection rate

The first of these can be performed using a Monte-

Carlo repeatability experiment.

The last two require a gold standard against which

to make a comparison.

In addition, most feature detection algorithms have

a sensitivity threshold (which corresponds to the

probability level of the null hypothesis). The best

value will be data dependent.

The way to deal with this is to produce curves

which describe the detection and false detection

rates as a function of threshold or even better ROC

curves.



Reciever Operator Curves.

algorithm threshold algorithm threshold

1.0

True signal
fraction

(arbitrary units) (arbitrary units)

1.0

False signal
fraction

False signal
fraction

1.0

True signal
fraction

1.0

False signal

(arbitrary units)

True signal
fraction

1.0

ROC curve FROC curve
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Algorithmic Modelling.

Statistical models of data vary with image test sets.

• N images.

• D degrees of freedom.

Perhaps trying to model the data is insufficient

Try modelling the algorithm and sampling the rel-

evant statistical distributions (Ref: Thacker).



Algorithmic Modelling.

Advantages:

• statistical distributions and assumptions which

determine the outcome of the algorithm are

made explicit and observed.

• performance may even be predicted for an in-

dividual image (assuming known or measurable

properties such as contrast, noise etc)

• algorithmic models allow the analysis of the

data- independent properties of the algorithm.

• provides an independent estimate of expected

performance for people wishing to develop their

own implementation of the algorithm.

The method requires a completely new approach to

algorithm development, new stages of an algorithm

are only added once the effects on performance can

be modelled.



Demo.

Evaluation of a matching algorithm

• image pair of textured face mask

• corner detection

• corner matching left and right

• discussion of matching performance



Feature Matching: Heuristics.

(a) local image similarity (eg image correlation).

(b) restricted search strategies (eg stereo epi-polars).



Feature Matching: Heuristics (cont).

(c) disparity gradient ( or smoothness ) constraints.

(d) one to one matching.

(e) reliability of detection.



Steps to the Algorithm

(a) Construct a list of possible matches a limited

search area A.

(b) Order the list according to a cross correlation

measure c.

(c) Select good matches on the basis of:

• a threshold ρ on the minimum acceptable cross

correlation c < ρ.

• a threshold ω on the ratio of absolute corner

strengths (c1−c2)2
(c1+c2)

2 < ω.

• reliability of the best candidate match cm com-

pared to the next best match cn on the basis

of a uniqueness parameter δ : eg: cm − cn < δ.

• the same best candidate match must be ob-

tained when matching from image 1 to image

2 and image 2 to image 1 (enforces 1:1 match).



GETTING AN INCORRECT MATCH

The algorithm can be modelled as a limited candi-

date match selection followed by matching on the

basis of a single cross-correlation similarity mea-

sure.

The important distributions for algorithm modelling

are the cross-correlation values for known correct

and incorrect matches.

By considering each detection configuration in turn

we can estimate the probability of getting an incor-

rect match.



• Case (a):

P am = 2nuP
2
d (1 − Pd)

2PI(ρ)

PI(x) =
∫ 1

x
PN(a)da

• Case (b):

P bm = 4nuP
3
d (1 − Pd)Pn(δ, ρ)

Pn(δ, ρ) =

∫ 1−δ

ρ
PS(x)

∫ 1−δ

x
PN(a− δ)dadx

• Case (c):

P cm = 2npP
4
d Pn(δ, ρ)Pk(δ, ρ)



REJECTING A CORRECT MATCH

• Case (a):

P ar = P2
d (1 − Pd)

2PJ(ρ)

PJ(ρ) =

∫ ρ

0
PS(x)dx

• Case (b):

P br = 2P2
d (1 − Pd)

2(PJ(ρ) + nuPl(δ, ρ))

Pl(δ, ρ) =

∫ 1

ρ
PS(x)

∫ 1+δ

x
PN(a+ δ)dadx

• Case (c):

P cr = P4
d (PJ(ρ) + 2npPl(δ, ρ) − n2

pPl(δ, ρ)
2)



Total correct and incorrect matches.

The total number of matches is given by:

PTm = P am + P bm + P cm

PTr = P ar + P br + P cr

Quantity of Rejected Data
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Quantity of Mismatched Data
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1

delta = 0.000
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delta = 0.008

delta = 0.012

0.98 0.99 rho



ALGORITHM ANALYSIS

1) All terms in PTm are proportional to the mean

number of candidate matches, thus we would ex-

pect the total number of mismatches to vary pro-

portionately with the search area A.

2) We expect type (a) mismatches to be a very

small fraction of the total number of mismatches.

The only way to remove these is to increase the

minimum required cross correlation value ρ.

3) We expect type (b) and (c) mismatches to be

of roughly equal importance and both are reduced

considerably by use of the uniqueness parameter δ

at the cost of only marginal reduction in the overall

number of matches.



ALGORITHM ANALYSIS

4) There is no improvement obtained by increas-

ing δ beyond a value of 1 − ρ as at this point all

mismatches of type (b) have already been rejected.

5) There is no set of parameters which give an

optimal signal to noise ratio, this value keeps on

rising with increasing ρ. There are however optimal

values of ρ and δ corresponding to the minimum

noise obtainable for a required proportion of signal.

For example using the above model for the data

the minimum noise obtainable at a signal level of

60% is 0.2% at parameter values of ρ = 0.985 and

δ = 0.0032 .



Part 5: More Advanced Statistical Foundations.

P.Courtney and N. A. Thacker

• Maximum Likelihood - Revisited.

• 3 cases:

– Non-Gaussian Errors.

– Dealing with Outliers.

– Non-Independent Measurements.

• Demo of camera calibration.



Maximum Likelihood - Revisited.

The most common approach for algorithm devel-

opment is based on the idea of MAXIMUM LIKELI-

HOOD, which is derived from the joint probability:

P(YX) = (ΠiP(Xi|Y ))P(Y )

Least squares (as we have seen) is derived from

Probability theory on the assumption of indepedent

Gaussian errors and that the prior probability of the

model P(Y ) can be ignored.

such that:

log(P(X|Y )) =
∑

i

log(P(Xi|Y ))

= −
∑

i

(Xi − f(i, Y ))2/σ2
i



The best choice for Y is the one which maximises

this likelihood.

There are several key failings of such an approach

when used as the basis for machine vision algo-

rithms:

• Much research is thus directed (sometimes un-

knowingly) to overcoming these limitations.

• Understanding what problems are being addressed

and how is fundamental to making use of the

results from other peoples research.

(Ref: Stevens - links Hough transform and maxi-

mum likelihood)



Non-Gaussian Errors.

Machine Vision is full of data that cannot be as-

sumed to be from a Gaussian distribution.

There are two forms of the problem:

• The error distribution may be relatively com-

pact but badly skewed.

• There may be outliers caused by data “con-

tamination”.



Non-Gaussian Errors.

The general technique for coping with the first

problem is to transform the data to remove skew-

ing.

eg:

∆x = f(x)

so we seek a function g which will give us

∆g(x) = const

using error propagation

∆g(x) = ∆x dg/dx = f(x) dg/dx = const

ie: integrate the reciprocal of the error depen-

dence:

g =
∫

const

f(x)
dx



Non-Gaussian Error Example: Stereo data

z = fI/(xl − xr)

errors in Pos(x, y, z) are badly skewed.

Attempting a LSF with these measures directly (eg

for model location) is unstable due to large errors

for large z.

However, errors on disparity space

Pos(x, y,1/(
√

2z)

are uniform and can be used for fitting.

The technique can be considered as applying the

inverse of error propagation (such as in image pro-

cessing) in order to work back to a uniform distri-

bution.



Dealing with Outliers.

This area of algorithm design is generally referred

to as Robust Statistics. The simplest technique

involves limiting the contribution of any data point

to the total LSF ie:

−log(P) =
∑

i

min((Xi − f(i, Y ))2/σ2
i ,9.0)

The choice of 9.0 (3 σ) as the limit on the con-

tribution is approximate and may depend on the

problem.

This technique is not particularly good for methods

which use derivatives during optimisation, as it in-

troduces discontinuities which can introduce local

minima.



Demo: Camera Calibration.

• corner detection and matching

• optimisation to camera model

• outlier rejection

– binomial plot

• rerun optimisation

– 1900 matches rises to 2200



Dealing with Outliers.

Alternative involves replacing the Gaussian with a

continuous distribution with long tails.

The most common of these is the double sided

exponential.

−log(P) =
∑

i

|(Xi − f(i, Y ))/σi|

This is adequate for most applications.



Dealing with Outliers (cont).

More complex techniques which attempt to model

slightly more realistic distributions can be found in

the literature eg: Caucy distribution

P(Xi|Y ) =
1

1 + (Xi − f(i, Y ))/σi)2/2

so that our log probability is now

−log(P) =
∑

i

log(1 + 1/2(Xi − f(i, Y ))/σi)
2)

These are continuous, so we can use derivative

methods for optimisation.

However, the price we pay is that, unlike stan-

dard least squares, such cost functions can rarely

(never?) be optimised by direct solution so we

have to use iterative techniques which are slower.



Non-Independent Measurements.

Under any practical circumstance the data deliv-

ered by a system may be correlated. It is then that

we may need to preprocess the data to remove

these correlations. This process is often called

PRINCIPAL COMPONENT ANALYSIS.

We can define the correlation matrix

R =
∑

i

(Xj −Xm) ⊗ (Xj −Xm)

where Xj is an individual measurement vector from

a data set and Xm is the mean vector for that set.



Non-Independent Measurements (cont).

It can be shown that orthogonal (linearly indepen-

dent) axes correspond to the eigenvectors Vk of the

matrix R. Solution of the eigenvector equation

RVk = λkVk

The method known as Singular Value Decompo-

sition (SVD) approximates a matrix by a set of

orthogonal vectors Wl and singular values wl.

R =
∑

l

1

w2
l

Wl ⊗Wl

If we multiply both sides of the equation by one of

these vectors Wk

RWk =
∑

l

1

w2
l

Wl ⊗Wl.Wk

we see that the singular vectors satisfy the eigen-

vector equation with

λk =
1

w2
k



Identifying Correlations.

Correlation produces systematic changes in one para-

mater due to changes in another.

This can be visualised by producing a scatter-plot

of the two variables f(x, y).

In general for any two variables to be un-correlated

knowledge of one must give no information regard-

ing the other.

In terms of the scatter plot this means that the

structure seen must be entirely modelable in terms

of the outer-product of the two marginal distribu-

tions.

f(x, y) = f(x) ⊗ f(y)

ie: decomposable.



Identifying Correlations (cont).

Principal component analysis works by rotating the

axes of the space to align along the axes of major

variance of the data. This may not necessarily de-

correlate the data.

There exist techniques for decorrelating non-linear

relationship but the methods are often quite dif-

ficult to use. (Ref: Sozou and Cootes using a

bottleneck neural network)



Part 6 : Evaluating Representation.

N. A. Thacker and P.Courtney.

• Evaluating Algorithms.

• Optimal Interpretation Algorithms.

• Completeness in Shape Recognition: Fourier,

Moments and Pairwise Geometric Histograms.

• Completeness in Texture recognition: Gabor,

Wavelets.



Evaluating Algorithms.

Probels such as object recognition will require enour-

mous data sets of a wide variety of examples, but

which?

Can define theoretical measures which only need

confirmation on small data sets.

One example is separability (see later) (Ref : May-

bank) Another such measure is the idea of Com-

pleteness.

All scene interpretation algorithms fall into a two

stage scheme

• representation

• recognition



For scene interpretation tasks, completeness is the

property that the representation chosen for the al-

gorithm is invertable. ie: it is possible to recon-

struct the original data (in all important respects

including required invariances ) from the represen-

tation parameters.



Further if the recognition stage of the algorithm

can then be shown to probabilistically (Bayes) cor-

rect decisions based on this data then the whole

scheme can be said to be optimal.

This may have to be defined under a restrictive

set of assumptions which define the scope of the

method and may also have temporal dependence.

Ignoring implementation and speed issues, the best

image interpretation schemes will be those that are

complete and optimal (with the largest scope of

application).



Completeness: Shape Representation.

Fourier Descriptors.

One example of a complete algorithm is the Fourier

descriptor of an object boundary. The existence

of an inverse process for this makes the technique

automatically complete.

However, this simple representation in x and y is

not scale or rotation invariant.

Alternatively, a curve is plotted as tangential orien-

tation against arc length Ψ(s) and converted to a

variable Ψ∗(t) which measures the deviation from

circulatiry.

Ψ∗(t) = Ψ(Lt/(2π)) + t t = 2πs/L

This periodic contour can then be represented as

a Fourier series.

Ψ∗(t) = µ0 +
∞
∑

k=1

Akcos(kt− αk)



The boundary is now uniquely represented by the

infinite series of Fourier coefficients, Ak and αk.

Attempting to introduce rotation invariance to this

by keeping only the amplitude components Ak de-

stroys the completeness.

This is a general feature of most invariant algo-

rithms, the process of obtaining the required invari-

ance characteristics introduces representaional am-

biguity.



Moment Descriptors.

Appart from Fourier descriptors, the other most
common complex shape descriptor in the literature
is Moment Descriptors.

Ignoring for the moment the main difficulties

• pre-processing the image to obtain suitable data

• defining an accurate centroid.

The regular moment of a shape in an M by N binary
image is defined as:

upq =
N−1
∑

j=0

N−1
∑

i=0

ipjqf(i, j) (1)

Where f(x, y) is the intensity of the pixel (either 1
or 0) at the coordinates (x, y) and p+ q is said to
be the order of the moment.

Measurements are taken relative to the shapes cen-
troid (x′, y′) to remove translational variability.



The coordinates of the centroid are determined us-

ing the equation above:

i =
u10

u00
and j =

u01

u00
(2)

Relative moments are then calculated using the

equation for central moments which is defined as:

upq =
N−1
∑

j=0

N−1
∑

i=0

(i− i)p(j − j)qf(i, j) (3)

The basic moment equations are complete (again

there is an inverse).

We can also compute a set of rotation invariant

moment measures.

M1 = (u20 + u02)



M2 = (u20 − u02)
2 + 4u2

11

M3 = (u30 − 3u12)
2 + (3u21 − u03)

2

M4 = (u30 + u12)
2 + (u21 + u03)

2

M5 = (u30−3u12)(u30+u12)((u30+u12)
2−3(u21+u03)

2)

+ (3u21−u03)(u21+u03)(3(u30+u12)
2−(u21+u03)

2)

M6 = (u20 − u02)((u30 + u12)
2 − (u21 + u03)

2)

+4u11(u30 + 3u12)(u21 + u03)

M7 = (3u21−u03)(u30+u12)((u30+u12)
2−3(u21+u03)

2)

− (u30−3u12)(u21+u03)(3(u30+u12)
2−(u21+u03)

2)



We can also recompute the original moment de-

scriptors from the invariant quantities, so the ro-

tational invariant equations are still complete.

However, errors do not propegate well through the

moment calculations and successively higher terms

become increasingly unstable. Thus we are lim-

ited to the practical number of terms that we can

actually use for recognition.

In practice moment descriptors are not actually

complete.



Pairwise Geometric Histograms.

Unlike the previous two represenatation schemes

PGH’s have been designed to directly encode local

shape information. (Demo: pairwise)

They are robust and do not require prior segmen-

tation of the object from the scene.

They have unlimited scope for arbitrary shape reprsene-

tation and encode the expected errors on shape

description directly so that there are no problems

with error propagation.

PGH’s encode local orientation and distance infor-

mation between edges detected on an object in a

way that provides rotation and translation invari-

ance.

Scale invariance can be obtained by interpolating

matching responses across a range of scales.



PGH Inverse.

It is not immediately obvious how we might get

from the set of PGH’s describing an object back

to an unambiguous shape.

If we take the projection of a PGH onto the angle

axis we will obtain a 1D histogram which is the

same for all line fragments appart from a shift due

to the line orientation.

Relative line orientation within the object can be

recovered.

A PGH can be considered as a projection along the

direction of the line through the area of the object

onto a projection axis.

Thus the set of pairwise histograms provides a

complete set of projections for various line orienta-

tions through the object analogous to a 2D image



reconstruction process such as is commonly found

in medical image processing applications.

A reconstruction process can thus be performed

which reconstructs the volume around the object

as a set of edge orientation specific density images.

These can then be combined to regenerate the

original shape.

Finally, recognition can be performed using a sim-

ple nearest neighbour strategy based on the his-

tograms which is gauranteed to be optimal



Reconstructed Data.



Completeness: Texture Representation.

Gabor Filters.

We know that the most compact function in both

the spatial and frequency domain is the Gaussian.

Can we therefore think of a way of performing a

frequency analysis (sinusoidal convolution) with a

Gaussian dependancy.

The simplest idea would be to multiply the Gaus-

sian and sinusoidal functions to give a spatially lo-

cated but frequency tuned convolution kernal. This

is an example of the Gabor filter.

Gabor filters have several free parameters to adjust

the scale of the Gaussian and sine components.

They can also be oriented in 2D within the image

plane.

They form a large possible set of image represen-

tations, too large! Which ones should we use for



classification, segmentation etc.

The Gabor filter does not form a complete set of

filters, nor are they orthogonal. Thus it is not

possible to perform an inverse.



Discrete Wavelet.

Like the Fourier transform, the wavelet transform

has a discrete (and therefore programable) form.

ψmn(t) = a
−m/2
0 ψ(

t− nb0
am0

)

Smn =

∫ ∞

−∞
ψ′
mn(t)S(t) dt

st = Kψ
∑

m

∑

n
Smnψmn(t)

Generally a0 = 21/v where v = voices/octave.

Any application using the Fourier Transform can be



formulated using wavelets to give more accurately

localised temporal and frequency information.

The existance of an inverse implies that the set of

wavelet transforms for an image region can be used

as a complete representation.



Part 7: Pattern Recognition and Neural Networks

N. A. Thacker and P. Courtney

• Pattern Space Separability.

• Honest Classifiers.

• Neural Network Training Criteria.

• Statistical Testing.

• Akaike Information Criteria.



Seperability of the Pattern Space.

All pattern recognition systems make explicit as-

sumptions regarding the expected distribution of

the data.

The minimum assumption we can make is that the

data we have is sampled from the class distribu-

tions with some measurement error.

Construction of a Parzen Classifier using the ex-

pected measurement distribution (G(Di)) for each

data point gives a minimum assumption Bayes clas-

sifier.

P(Cn|Di) =

∑In
in
Gi(Di)

∑

n
∑

inGi(Di)

This can be used to construct a classification ma-

trix for the space which reflects data separability.



(Demo: xgobi)

Exclusion of the classified point from the model

gives a cross-validated estimate of performance.

Disease Norm. F.T.D. Vas.D. Alz.

Normal 7 2 8 1
Fronto− Temporal 5 21 3 7

V ascular 3 2 13 4
Alzheimers 1 3 6 28

Table 1. Disease (rows) vs classification

(columns) for a cross-validated Parzen classifier.

Averaging leave-one-out and leave-all-in results gives

an estimate of the performance which would result

with infinite statistics with the same prior ratios.

(Ref: Cox)

Disease Norm. F.T.D. Vas.D. Alz.

Normal 12.0 1.0 4.5 0.5
Fronto− Temporal 2.5 28 2 3.5

V ascular 1.5 1 17.5 2
Alzheimers 0.5 1.5 3 33

Table 2. Disease (rows) vs predicted classification

(columns) for unlimited statistics.



Honest Classifiers.

Any classification system which attempts to esti-

mate conditional probabilities of classification P(C|D)

should produce uniform frequency distributions when

tested on the data it is intended for.

This can be used as the basis for a simple test.

The Honest Classsifier will produce errors 1−P(C|D)

of the time for a forced decision based on P(C|D).

Only honest classifiers are Bayes optimal.

This result has been used to show that Markov

update schemes when used for regional labelling

are not optimal. (Ref: Poole)



Neural Network Training Criteria.

Under certain conditions artificial neural networks

can be shown to estimate Bayesian conditional prob-

abilities.

• The most common optimisation function is the

least squares (Gaussian based) error criteria which

summed over the entire data set for output k

gives.

Ek =
∑

n
(o(In) − tnk)

2

where tnk is the nth training output and o is the

output from the network for a particular input

In.

• Provided that we are training with data which

defines a 1-from-K coding of the output (ie

classification) we can partition the error mea-

sure across the K classes according to their rel-

ative conditional probabilities p(Ck|I) so that

Ek =
∑

n

∑

k

(o(In) − tnk)
2 p(Ck|In)



expanding the brackets

Ek =
∑

n
(o2(In) − 2o(In)

∑

k

tnk p(Ck|In)

+
∑

k

t2n p(Ck|In))

=
∑

n
(o2(In) − 2o(In) < tk|In > + < t2k |In >)

where < a|I > is the expectation operator of a

at In. By completing the square

Ek =
∑

n
(o(In)− < tn|In >)2 +

∑

n
var(tk|In)

The last term is purely data dependent so train-

ing minimises the first term which is clearly a

minimum when o(In) = < tk|In >.

For a 1-from-K coding of the output and in

the limit of an infinite number of samples <

tk|In > = P(Ck|In).



• Another cost function often defined for network

optimisation is the cross-entropy function

Ek = −
∑

n
tnklog(o(In)) + (1−tnk)log(1−o(In))

This is motivated by the assumption that de-

sired outputs tnk are independent, binary, ran-

dom variables and the required output network

response represents the conditional probability

that these variables would be one.

The proof of this follows as above with the

introduction of the partion of the classification

state over the one and zero cases eventually

giving

Ek = −
∑

n
< tk|In > log(o(In))

+ (1− < tk|In >)log(1 − o(In))

which when differentiated with respect to the

desired output shows that this function is min-

imised again when

o(In) = < tk|In >



Statistical Testing.

• A practical problem in understanding network

performance.

• The final cost function value after training pro-

vides only a best case estimate of performance.

• Increasing the complexity of the network will

always improve the ability of the network to

map the training data.

• The ability of the network to provide accurate

outputs for unseen data may reduce. The bias-

variance dilemma.

• The common solution to this problem is known

as ‘jack-knifing’ or the ‘leave-one-out’ strategy.



Akaike Information Criteria.

The probabilistic form of the χ2 is written as fol-

lows;

χ2 = − 2
N
∑

i=1

log(p(xi, θ))

The limit of the bias is estimated directly as ;

q = < 2
N
∑

i=1

log(p(xi, θ)) > − < 2
N
∑

i=1

log(p(xi)) >

where p(xi) is the true probability from the correct

model and < X > denotes the expectation opera-

tion.

We can expand this about the true solution θ0 as;

q = < 2
N
∑

i=1

[log(p(xi, θ0))+(θ−θ0)∂log(p(xi, θ0))/∂θ

+
1

2
(θ − θ0)

TH(xi, θ0)(θ − θ0) + h.o.t] >

− < 2
N
∑

i=1

log(p(xi)) >



where H(xi, θ0) is the Hessian of the log probability

for a single data point.

The second term has an expectation value of zero

and excluding the higher orders the remaining terms

can be re-written as;

q′ = < 2
N
∑

i=1

log(p(xi, θ0)) − 2
N
∑

i=1

log(p(xi)) >

+ <
N
∑

i=1

(θ − θ0)
TH(xi, θ0)(θ − θ0) >

The first term is 2n independent estimates of the

Kullback-Liebler distance which is expected to be

zero. The second term can be re-written using the

matrix trace identity such that

q′ = 2nLKL(p, pθ0)

+ trace(<
N
∑

i=1

H(xi, θ0) >< (θ − θ0)(θ − θ0)
T >)



For a well determined system we would expect the

trace of the product of these matricies to be the

rank of the parameter covariance.

This is simply the number of model parameters k

and leads to the standard form of the AIC measure

used for model selection

AIC = χ2 + k



Summary.

Testing with images is neccesary but not always

sufficient.

Conventional Statistical methods for computing co-

variances can be used to qualify the results of al-

gorithms based upon likelihood statistics.

Robust Statistics will probably be needed for all

practical problems, but covariances can still be com-

puted.

Error propegation can be used to assess the effects

of noise and guide the design of stable algorithms.

Monte-Carlo techniques can be used when all other

methods fail.

Theoretical requirements of algorithms such as scope,

optimality and completeness can guide the design

of good algorithms.

Pattern classification techniques require represen-

tative test data sets and embody the fundamental

problem of model selection.
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