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1 Background

Our approach to the construction and evaluation of systems is based upon what could be

regarded as a set of self evident propositions.

• Vision algorithms must deliver information allowing practical decisions regarding inter-

pretation of an image.

• Probability is the only self-consistent computational framework for data analysis, and

so must form the basis of all algorithmic analysis processes.

• The most effective and robust algorithms will be those that match most closely the

statistical properties of the data.

• A statistically based algorithm which takes correct account of all available data will

yield an optimal result1.

Attempting to solve vision problems of any real complexity neccesitates, as in other engi-

neering disciplines, a modular approach (a viewpoint popularised as a model for the human

vision system by David Marr [14]). Therefore most algorithms published in the machine

vision literature attend to only one small part of the “vision” problem, with the implicit in-

tention that the algorithm could form part of a larger system2. Bringing these together as

components in a system requires that the statistical characteristics of the data generated by

one module match the assumptions underpinning the next.

In many practical situations problems cannot be easily formulated to correspond exactly to

a particular computation. Compromises have to be made, generally in assumptions regarding

the statistical form of the data to be processed, and it is the adequacy of these compromises

which will ultimately determine the success or failure of a particular algorithm. Thus, un-

derstanding the assumptions and compromises of a particular algorithm is an essential part

of the development process. The best algorithms not only model the underlying statistics of

the measurement process but also propagate these effects through to the output. Only if this

process is done correctly will algorithms form robust components in vision systems.

The evaluation of vision systems cannot be separated from the design process. Indeed

it is important that the system is designed for test by adopting a methodology within which

performance criteria can be adequately defined. When a modular strategy is adopted, system

testing can be usefully considered as a two stage process [17] (summarised in Figure 1);

• the evaluation of the statistical distributions of the data and comparison with algorith-

mic assumptions in individual modules; technology evaluation,

• the evaluation of the suitability of the entire system for the solution of a particular type

of task; scenario evaluation.

The process of scenerio evaluation is often time consuming and not reusable. The process

of technology evaluation is complex and multi-dimensional, however the results are reusable

for a range of applications. It therefore merits effort and should be attempted. Ideally, we

1Where the definition of optimal can be unambiguosly defined by the statistical specification of the problem.
2Though it could be argued that many researchers have lost focus on the bigger problem and thus the true

motivations of a modular approach.
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Figure 1: Scenario and Technology evaluation in a two stage statistical data analysis system.

would like to be able to specify a limited set of summary variables which define the require-

ments of the input data and the main characteristics of the output data, in a manner similar to

an electronic component databook. However, it must be remembered that it is the suitability

of the output data for use in later modules which defines performance, and in some circum-

stances it may not be easy (or even possible) to define performance independent of practical

use of the data. For instance, problems can arise when the output data of one algorithm is to

be fed into several subsequent algorithms, each having different or even conflicting require-

ments. The most extreme example of this is perhaps scene segmentation. A concise method

for the evaluation of such algorithms in the absence of a definite goal is likely to continue to

be a challenge [21]. Machine vision research has not emphasised the need or necessary meth-

ods of algorithm characterisation which is rather unfortunate, as the subject cannot advance

without a sound empirical base [9]. In our opinion this problem can generally be attributed to

one of two main factors; a poor understanding of the role of assumptions and statistics; and

a lack of appreciation of what is to be done with the generated data. The assumptions behind

many algorithms are rarely clearly stated and it is often left to the reader to infer them3. The

failure to present clearly the assumptions of an algorithm often leaves the reader confused as

to the novel or valid aspects of the published research and can give the impression that it is

possible to create good algorithms by accident rather than design. In addition, the inability

to match algorithms to tasks may lead those who require practical solutions to real problems

to conclude that little (if anything) published in this area really works. When in fact, virtually

all published algorithms can be expected to work, provided the input data satisfy the assump-

tions implicit in the technique. It is the unrealistic nature of these assumptions (e.g. noise

free data) which is more likely to render algorithms useless. The following is a description

of a methodology for the design of vision module components. This methodology focuses on

identifying the statistical characteristics of the data and matching these to the assumptions

of particular techniques. The methods given in the appendices have been drawn from over

a decade of vision system design and testing, which has culminated in the construction of

the TINA machine vision system [25]. These include a combination of standard techniques

and less standard ones which we have developed to address specific problems in algorithm

design.

3A process we have previously called “inverse statistical identification” an allusion to the analogous problem

of system identification in control theory.
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Example Task Data Error Assumption

Image Processing Images Uniform random Gaussian

Distribution Analysis Histograms Poisson sampling statistics

Shape Analysis Edge location Gaussian perpendicular to edge

2D Geometrical Location Line fits Uniform Gaussian on end-points

Object Tracking Corner features Circular (Elliptical) Gaussian

3D Objection Location Stereo data Gaussian in disparity space

Table 1: Standard error model assumptions.

2 Technology and Scenario Evaluation

There are several common models for statistical data analysis, all of which can be related at

some stage to the principle of maximum likelihood (appendix A). This framework provides

methods for the estimation and propagation of errors, which are essential for characterising

data at all stages in a system. Likelihood based approaches begin by assuming that the data

under analysis conforms to a particular distribution. This distribution is used to define the

probability of the data given an assumed model (appendix B).

2.1 Input data

The first step in evaluating an algorithmic module is identification of the appropriate model

and empirical confirmation of the distribution with sample data. Appropriate methods for

this task include; correlation analysis, histogram fitting and the Kolmogrov-Smirnov test [24].

The interpretation of the results from such processes require knowledge of the consequences

of deviation from the expected distribution. In general, the greatest problems are caused

by outliers (see below) although, the better the data distributions conforms to the assumed

model, the better the results. Assumptions which prove valid for one algorithm, can often

prove useful in the design of new algorithms. Some distributions commonly used in the

machine vision literature are tabulated in Table 1.

Although there are no general restrictions on the shape of these distributions the most

common are Gaussian, Binomial, Multinomial and Poisson. These correspond to commonly

occurring data generation processes and are well described in the statistical literature. The

central limit effect ensures that the assumption of Gaussian distributed data forms the basis

of many algorithms. This leads to tractable algorithms as the log-likelihood formulation of a

Gaussian assumed model often takes the particularly simple form of a least-squares statistic,

which can often be formulated as a closed form solution (appendix B). It is therefore useful

to know that certain non-linear functions will transform the other common distributions to a

form which approximates a Gaussian with sufficient accuracy to enable least-squares solutions

to be employed.

Unfortunately, most practical situations generate data with long tailed distributions (out-

liers). The problems associated with outliers in data analysis are well known. However, what

appears less well understood is the reason for the complete lack of closed form solutions

based upon a long tailed distribution. Almost by definition only a simple quadratic form (or

monotonic mapping thereof) for the log-likelihood, can have a unique minimum. Long tailed

(non-Gaussian) likelihood distributions inevitably result in multiple local minima which can
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only be located by explicit search (e.g. the Hough transform) or optimisation (e.g. gradient

descent).

Other assumptions in the likelihood formulation generally include those of data indepen-

dence. Independence can be confirmed by plotting joint distributions. Uncorrelated data will

produce joint distributions which are entirely predicted by the outer product of the marginal

distributions (appendix F). Correlations (the lack of independence) in data can have several

consequences. Strong correlations may produce suboptimal estimates from the algorithm and

covariances may not concisely describe the error distribution (see later).

2.2 Output data

The next step in module analysis is to estimate the errors on the output data. If the output

is the result of a log-likelihood measure then errors can be computed using covariance es-

timation (appendix C). Covariance estimation is possible even in the presence of outliers,

provided that a robust kernal is used [15]. If the output quantities from a module are com-

puted from noisy data the errors on the results can be calculated using error propagation

(appendix D). Both of these theoretical techniques assume Gaussian distributed errors and

locally linear behaviour of the algorithmic function.

These assumptions require validation (i.e. checks to ensure that the theory is an accu-

rate representation of reality), which can be achieved using Monte-Carlo approaches (ap-

pendix H). Once again, techniques such as histogram fitting and Kolmogorov-Smirnov tests

are useful. High degrees of non-linear behaviour can be addressed using a technique we call

modal arithmetic [30] (appendix G). Non-linear transformation of estimated variables may

be necessary in order to make better approximations to Gaussian distributions. It may also be

necessary to combine variables in order to eliminate data correlation. The definition of the

parameters passed between algorithms can be substantially different to naive expectation e.g.

3D data from a stereo algorithm is best represented in disparity space (appendix E). Selecting

data representations which provide concise descriptions of statistical distributions is of funda-

mental importance 4. Notice, the evaluation process is having direct influence on the process

of system design, underscoring the earlier statements that system design and performance

evaluation cannot (and should not) be treated separately.

In many cases the division of tasks into modules will be driven by the statistical character-

istics of the processed data and cannot be specified a priori. Given the source of data typical

of machine vision applications it is also very likely that algorithms will produce outlier data

which cannot be eliminated by transformation or algorithmic improvement and will therefore

require appropriate (robust) statistical treatment in later modules (see appendix L).

A rigid application of the above design and test process (see Figure 2) will produce ver-

ifiably optimal outputs from each module. Ultimately however, we will need to know if this

data is of sufficient quality to achieve a particular task, a process we will call scenario evalu-

ation. Under many circumstances it should be sufficient to determine the required accuracy

of the output data in order to achieve this task. The covariance estimates from the technology

evaluation would then be sufficient to quantify the expected performance of the system on a

per-case basis.

Statistical measures of performance can be obtained by testing on a representative set

of data. We would anticipate the need to compute the probability of a particular hypothe-

4yet is often overridden by preconcieved ideas of algorithm design.
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Figure 2: Technology evaluation flow chart. This diagram identifies the major design de-

cisions which must be addressed in order to deliver quantified outputs from an algorithm.

Transforms are suggested at various stages in order to solve problems associated with non-

Gaussian behaviour. The label Bootstrap is intended to refer to coustom made statistical

measures constructed from sample data.
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sis, either as a direct interpretation of scene contents or as the likely outcome of an action

(appendix I). Such probabilities are directly testable by virtue of being honest probabilities

(appendix J). The term honest simply means the computed probability values should directly

reflect the relative frequency of occurrence of the hypothesis in sample data (classification

probabilities P (C|data) should be wrong 1−P (C|data) of the time). Tested hypothesis, such

as that a particular set of data could have been generated by a particular model, should have

a uniform probability distribution. Direct confirmation of such characteristics provide pow-

erful tools for the quantitative validation of systems and provide mechanisms for online self

test.

Often, we will need to construct systems which are not simply a series of sequential oper-

ations. It is quite likely that vision modules might provide evidence from several independant

sources. Under these conditions we will need to perform a data fusion operation. Within

the probabilistic framework described above there are three ways of achieving this; combi-

nation of probability (using a learning technique such as a neural network), combination of

likelihoods (using covariances), and combination of hypothesis tests. All three of these are

described in great detail in appendix K.

3 Identifying Candidate Modules from the Literature

Armed with the above methodology we are in a position to evaluate work in the machine

vision literature in terms of its likely suitability for use in a vision system. In fact we can

generate a short list of questions which exemplify those we should attempt to answer when

evaluating a module for inclusion in a system.

• Does the paper make clear the task of the module?

• Are the assumptions used in algorithm design stated?

• Is the work based upon (or related to) a quantitative statistical framework?

• Are the assumed data distributions realistic i.e. representative of the data available in

the considered situation?

• Has the computation of covariances been derived and tested?

• Does the theoretical prediction of performance match practical reality?

• Is the output data in a suitable form for use in any subsequent system?

The poor intersection between this list and general academic interests in this area (such

as novelty and mathematical sophistication) underscores the main problems faced by those

attempting to construct practical systems.

Notice that this list does not include system testing on typical image datasets, as that

would be regarded as scenario rather than technology evaluation. Scenario evaluation, with-

out considering the statistical characterisitcs of the data, is likely to be of much less value

in the development of re-usable modules as the results will be task specific. Unfortunately,

when performance characterisation is carried out in the literature it is very often a scenario

evaluation. This goes against the implied assumption that most vision research is intended

for use in a larger system.
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4 Summary and Conclusions

This document suggests a quantitative statistical approach to the design and testing of ma-

chine vision systems which could be considered as an extension of methodologies suggested

by other authors [2, 10]. We have focused on the use of likelihood and hypothesis testing

paradigms and it would be natural for a reader familiar with the machine vision literature to

feel that we have missed out other approaches which have (or have had) a higher profile in

the literature (e.g. computational geometry and image analysis as inverse optics). However,

we would argue that for the modular approach to system building to succeed we must have

appropriate control over the statistical distributions generated during analysis. This is pos-

sible with likelihood based techniques because they enable the construction of measures to

determine the best interpretation of the data (such as least squares) and also allow quanti-

tative predictions to be made of the stability of estimated parameters (such as covariances).

The machine vision problem, therefore, does not stop once a closed form solution is found

(see [11] for a discussion of the use of statistics in closed form solutions). Inevitably, to ac-

quire quantitative data for use in a systemi, error analysis will be required. This difficult step

is often missing in the work found in the literature, yet attempting to do it can completely

alter our understanding of the apparent value or even validity of the approach. The work of

Maybank [13] demonstrated exactly this point with regard to the use of affine invariants for

object recognition.

The reader may at this point feel that there is a broader context for probability theory than

likelihoods and hypothesis testing. In particular likelihood based techniques have well known

limitations, such as bias in finite samples [6]. The problem of model selection [27] is endemic

in the machine vision area and likelihoods cannot be directly compared between two different

model hypotheses. Approaches which aim to directly address these issues are thus acceptable

extensions to the above methodology. However, some popular areas of probability theory do

not (at least yet) have comparable quantitative capabilities (e.g. Bayesian approaches) and

may therefore be unsuitable for system building. We have made an attempt to summarise

these issues in [4]. It remains to be seen whether advocates of these approaches are able to

address these issues.

Other approaches to algorithm design use methods which are based upon apparently dif-

ferent principles, such as entropy and mutual information [31]. However, we regard these as

only alternative ways to formulate problems and believe that most experienced researchers

would accept that all approaches should be reconcilable with probability theory [22]. Thus

if there already exists a likelihood based formulation of the technique, this should be taken

as the preferred approach. Obviously, if the research community as a whole accepted this

viewpoint many papers would already have been written and presented differently. As the

construction of systems from likelihood based formulations is generally likely to require op-

timisation of robust statistics, generic algorithms for the location of multiple local optima

should be regarded as a fundamental research issue. So too should the problem of covari-

ance estimation from common optimisation tasks and popular algorithmic constructs, (such

as Hough transforms), which have already been shown to be consistent with likelihood ap-

proaches [23].

Many attempts at algorithmic evaluation in the literature focus on the specification of

particular performance metrics. Although these metrics may give some indication as to the

basic workings of an algorithm, quantitative evaluation should set as the ultimate goal an

understanding of the performance of the system. Performance metrics for modules should
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therefore be specified with this in mind. Non-quantitative evaluation is probably of more use

in the early stages of algorithm construction than during the final integration into a system.

In the methodology described a key aspect is the identification of assumptions. Knowledge

of these assumptions (and suitable methods for determining their validity) allows compar-

isons of algorithms to be carried out at the theoretical level. Also, we should not be surprised

when algorithms which are built upon the same set of founding assumptions within a sensi-

ble probabilistic framework, give near identical performance. This has been well illustrated

in one particular piece of work by Fisher et. al [8], where alternative techniques for loca-

tion of 3D models in 3D range data were found to give equivalent results to within floating

point accuracy. If careful statistical analysis of data did not give this result then it would be

an indication that probability theory itself was not self-consistent. Also, when performing

comparative testing of modules we should be aware that algorithmic scope, as determined by

the restrictions imposed by the assumptions, should be taken into account in the final inter-

pretation of results. Algorithms which give apparently weaker performance on the basis of

performance metrics may still be more applicable for some tasks. A simple example of this is

that least squares fitting will generally give a better bounded estimate of a set of parameters

than robust techniques, yet robust techniques are essential in the presence of outliers. An

evaluation of these two techniques in the absence of outliers would incorrectly conclude that

least-squares was always more accurate. Clearly this result is of limited use when building

practical systems.
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Appendix Page Title

A Maximum Likelihood

B Common Likelihood Formulations

C Covariance Estimation

D Error Propagation

E Transforms to Equal Variance

F Correlation and Independence

G Modal Arithmetic

H Monte-Carlo Techniques

I Hypothesis Testing

J Honest Probabilities

K Data Fusion

L Reciever Operator Curves

A Maximum Likelihood

A more detailed treatment of the theory and techniques of Maximum Likelihood statistics can

be found in [6]. A summary of the theory is presented here for completeness.

For n events with probabilities computed assuming a particular interpretation of the data

Y (for example a model)

P (X0X1X2...Xn|Y )P (Y ) = P (X0|X1X2...XnY )P (X1|X2...XnY )......P (Xn|Y )P (Y )

Maximum Likelihood statistics involves the identification of the event Y which maximises

such a probability. In the absence of any other information the prior probability P (Y ) is

assumed to be constant for all Y . For large numbers of variables this is an impractical method

for probability estimation. Even if the events were simple binary variables there are clearly an

exponential number of possible values for even the first term in P (XY ) requiring a prohibitive

amount of data storage. In the case where each observed event is independent of all others

we can write

(X|Y ) = P (X0|Y )P (X1|Y )P (X2|Y )...P (Xn|Y ).

The rather redundant use of the conditional terms |Y is often dropped for convenience.

Clearly this is a more practical definition of joint probability but the requirement of indepen-

dence is quite a severe restriction. However, in some cases data can be analysed to remove

these correlations, in particular the use of an appropriate data model (such as in least squares

fitting) and processes for data orthogonalisation (including principle component analysis).

For these reasons all common forms of maximum likelihood definitions assume data indepen-

dence.

Probability independence is such an important concept it is worth defining carefully. If

knowledge of the probability of one variable A allows us to gain knowledge about another

event B then these variables are not independent. Put in a way which is easily visualised,

if the distribution of P (B|A) over all possible values of B is constant for all A then the two

variables are independent. Assumptions of independence of data can be tested graphically by

plotting P (A) against P (B) or A against B if the variables are directly monotonically related

to their respective probabilities.
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There are two other aspects of the application which require particular care. The first

is that we have described here probabilities of unique events. In fact for many applications

of likelihood we will need to work with continuous functions. Alternative selections for the

continuous data space will produce different likelihood estimates. This issue will be discussed

further below. The second issue is related to the first and is the problem of probability nor-

malisation. The standard definition simply demands that distributions be normalised to 1.

Unfortunately, such normalisation does not take into account the true information content

of the data. ML is therefore not a true statistic, one consequence of this is that distribution

normalisation cannot be allowed to change during parameter estimation or ML estimates

compared across data sets. However, estimation of quantitative statistical quantities, such as

covariances (Appendix C) can proceed provided the normalisation is fixed.
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B Common Likelihood Formulations

Dealing with Binary Evidence

The simplest likelihood model is for binary observations of a set of variables with known

probabilities. If we make the assumption that the event Xi is binary with probability P (Xi)
then we can construct the probability of observing a particular binary vector X as:

P (X) = Πi(P (Xi)
Xi(1 − P (Xi))

(1−Xi)

The log likelihood function is therefore

log(P ) =
∑

i

Xilog(P (Xi)) + (1 − Xi)log(1 − P (Xi))

This quantity can be minimised or directly evaluated in order to form a statistical deci-

sion regarding the likely generator of X. This is therefore a useful equation for methods of

statistical pattern recognition.

If we now average many binary measures of X into the vector O we can compute the

mean probability of observing the distribution O generated from P (X) as:

< log(P ) >=
∑

i

O(Xi)logP (Xi) + (1 − O(Xi))log((1 − P (Xi))

It should be noted that this is not the log probability that O is the same distribution as

P as it is asymmetric under interchange of O and P. To form this probability we would also

have to test for P being drawn from the distribution O. The resulting form of this comparison

metric is often referred to as the log entropy measure as the mathematical form is analogous

to some parts of statistical mechanics in physics.

Poisson and Gaussian Data Distributions

A very common problem in machine vision is that of determining a set of parameters in a

model. Take for example a set of data described by the function f(a, Yi) where a defines

the set of free parameters defining f and Yi is the generating data set. If we now define the

variation of the observed measurements Xi about the generating function with some random

error we can see that the probability P (X0|X1X2...XNaY0) will be equivalent to P (X0|aY0)
as the model and generation point completely define all but the random error. Choosing

Gaussian random errors with a standard deviation of σi gives:

P (Xi) = Aiexp(
−(Xi − f(a, Yi))

2

2σ2
i

)

where Ai is a normalisation constant. We can now construct the maximum likelihood

function

P (X) = ΠiAiexp(
−(Xi − f(a, Yi))

2

2σ2
i

)

which leads to the χ2 definition of log likelihood
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log(P ) =
−1

2

∑

i

(Xi − f(a, Yi))
2

σ2
i

. + const

This expression can be maximised as a function of the parameters a and this process is

generally called a least squares fit. Whenever you encounter least squares there is implicit

assumption of independence and of a Gaussian distribution. In practical situations the validity

of these assumptions should be checked by plotting the distribution of Xi − f(a, Yi) to make

sure that it is Gaussian.

Often when working with measured data we need to interpret frequency distributions of

continuous variables, for example in the form of frequency histograms. In order to do this

we must know the statistical behaviour of these measured quantities. The generation process

for a histogram bin quantity (making an entry at random according to a fixed probability)

is strictly a multi-nomial distribution, however for large numbers of data bins this rapidly

becomes well described by the Poisson distribution. The probability of observing a particular

number of enties hi for an expected probability of pi is given by:

P (hi) = exp(−pi)
pk

i

hi!

For large expected numbers of entries this distribution approximates a Gaussian with σ =√
hi. The limit of a frequency distribution for an infinite number of samples and bins of

infinitessimal width defines a probability density distribution. These two facts allow us to see

that the standard χ2 statistic is appropriate for comparing two frequency distributions hi and

ji for large measures

χ2 =
∑

i

(hi − ji)
2/(hi + ji)

This equation has the restriction that it is not defined in the region where hi + ji = 0.

We can overcome this problem by transforming the data to a domain where the errors are

uniform by taking square roots. This process not only reduces the approximation error but

also removes the denominator, leading to the common form of probability comparison metric

known as the Matusita distance measure LM :

LM =
∑

i

(
√

P1(Xi) −
√

P2(Xi))
2

This can be rewritten in a second form:

= 2 − 2
∑

i

√

P1(Xi)P2(Xi)

Where the second term defines the Bhattacharyya distance metric LB:

LB =
∑

i

√

P1(Xi)
√

P2(Xi)

13



C Covariance Estimation

The concept of error covariance is very important in statistics as it allows us to model linear

correlations between parameters. For locally linear fit functions f we can approximate the

variation in a χ2 metric about the minimum value as a quadratic. We will examine the two

dimensional case first where the quadratic formula is:

z = a + bx + cy + dxy + ex2 + fy2

This can be re-written in matrix algebra as:

χ2 = χ2
0 + ∆XT C−1

x ∆X

where C−1
x is defined as the inverse covariance matrix thus

C−1
x =

u v
w s

Comparing this with the original quadratic equation gives

χ2 = χ2
0 + ∆X2u + ∆Y ∆Xw + ∆X∆Y v + ∆Y 2

where

a = χ2
0, b = 0, c = 0, d = w + v, e = u, f = s.

Notice that the b and c coefficients are zero as required if the χ2 is at the minimum. In the

general case we need a method for determining the covariance matrix for model fits with an

arbitrary number of parameters. Starting from the χ2 definition using the same notation as

previously

χ2 =
1

2

N
∑

i

(Xi − f(Yi, a))2

σ2
i

.

We can compute the first and second order derivatives as follows:

∂χ2

∂an

=
N

∑

i

(Xi − f(Yi, a))

σ2
i

∂f

∂an

∂2χ2

∂an∂am

=
N

∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am

− (Xi − f(yi, a))
∂2f

∂an∂am

)

The second term in this equation is expected to be negligible compared to the first and

with an expected value of zero if the model is a good fit. Thus the cross derivatives can be

approximated to a good accuracy by

=
N

∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am

)
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The following quantities are often defined

βn =
1

2

∂χ2

∂an

αnm =
1

2

∂2χ2

∂an∂am

As these derivatives must correspond to the first coefficients in a polynomial (Taylor)

expansion of the χ2:

C = α−1 where α =
α11 α12 . . .
α21 α22 . . .
. . . . . . αnm

And the expected change in χ2 for a small change in model parameters can be written as

∆χ2 = ∆aTα∆a
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D Error Propagation

In order to use a piece of information f(X) derived from a set of measures X we must have

information regarding its likely variation. If X has been obtained using a measurement sys-

tem then we must be able to quantify the precision of this system. Therefore, we require a

method for propagating likely errors on measurements through to f(X). Assuming knowl-

edge of error covariance this can be done as follows:

∆f(X) = ∇fTCX∇f

The method simply uses the derivative of the function f as a linear approximation to approx-

imation to that function. This is sufficient provided that the expected variation in parameters

∆X is small compared to the range of linearity of the function. Application of this technique

to even simple image processing functions gives useful information regarding the expected

stability of each method (Table 2). When constructing algorithms from such image processing

modules any data dependency will produce problems with noise stability unless the errors are

propagated fully for later use.

Process Calculation Theoretical Error

Addition O = I1 + I2 ∆O2 = σ2
1 + σ2

2

Division O = I1
I2

∆O2 =
σ2

1

I2

2

+
I2

1
σ2

2

I4

2

Multiplication O = I1 . I2 ∆O2 = I2
2σ2

1 + I2
1σ2

2

Square-root O =
√

(I1) ∆O2 =
σ2

1

I1

Logarithm O = log(I1) ∆O2 =
σ2

1

I2

1

Polynomial Term O = In
1 ∆O2 = (nIn−1

1 )2σ2
1

Table 2: Table 2: Error Propagation in Image Processing Operations

As an example we can take the Poisson distribution itself which for large numbers is

expected to have a standard deviation of
√

N where N is the mean of the distribution. We

will call a sample random variable from this distribution s. If we now construct a new measure

given by

t =
√

s

then we can show, using a simplified form of error propagation for one parameter, that the

expected variance on t is given by

∆t =
∂t

∂s
∆s

=
−1

2
√

s

√
s

=
−1

2

16



Thus the distribution of the square-root of a random variable drawn from a Poisson dis-

tribution with large mean will be constant. This result can be used to generate the Matusita

probability distribution comparison metric defined in appendix B.

When the problem does not permit algebraic mainpulation in this form (due to significant

non-linear behaviour in the range of ∆f(X) or functional discontinuities) then numerical

(Monte-Carlo) approaches may be helpful in obtaining the required estimates of precision

(appendix H).
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E Transforms to Equal Variance

The choice of a least squares error metric gives many advantages in terms of computational

simplicity and is also used extensively for definitions of error covariance and optimal combi-

nation of data (Appendices C and K ). However, the distribution of random variation on the

observed data X is something that generally we have no initial control over and could well

be arbitrary and so we have the problem of adjusting the measurements in order to account

for this. In addition, we have the problem that different choices for the way we represent

continuous data will produce different likelihood measures. Take for example a set of mea-

surements made from a circle, we can choose to measure the size of a circle as a radius or

as an area. However, it can be easily shown that constructing a likelihood technique based

upon sampled distributions will produce different (inconsistent) formulations for these two

representations of the same underlying data. Transferrring the likelihood from a distribution

of radial errors will not produce the impirically observed distribution for area due to the non-

linear transformation between these variables. Which should we choose as correct (or are

both wrong)? Initially these may be seen as separate problems, but in fact they are related

and may have one common solution. To understand this we need to consider non-linear data

transformations and the reasons for applying them.

In many circumstances it is possible to make distributions more suitable for use of stan-

dard ML formulations (Appendices B) by transformation g(Xi) and g(f(a, Yi)), where g is

chosen so that the initial distribution of Xi maps to an equal variance distribution (near

Gaussian) in g. Examples of this for statistical distributions are the use of the square-root

transform for Poisson distributed variables [28] and the asin mapping for binomial dis-

tributed data. However, this problem can occur more generally due to the need to have to

work with quantities which are not measured directly, but computed from other measured

quantities.

One good example of this is in the location of a known object in 3D data derived from

a stereo vision system. In the coordinate system where the viewing direction corresponds to

the z axis, x and y measures have errors determined by image plane measurement. However,

the depth zi for a given point is given by

zi = fI/(Xli − Xri)

where I is the interocular separation, f is the focal length and Xli and Xri are image

plane measurements. Attempts to perform a least squares fit directly in (x, y, z) space results

in instability due to the non-Gaussian nature of the zi distribution. However, transformation

to (x, y, 1/
√

2z) yields Gaussian distributions and good results. In general, observation of a

dependency of the error distribution of a derived variable with that variable (in the above case

the dependency of σz on z), is very often a sign that the likelihood distribution is skewed. For

a known functional dependency h the transformation g which maps the variable Xi to one

with equal variance follows directly from the method of error propagation and is given by

g =

∫

1

h(X)
dX

All of the transformations mentioned above can be generated from this process, including

those which map standard statistical distributions to more Gaussian ones, though the extent

to which this is a general property of this method is unclear. We are now also in a posi-

tion to answer our questions regarding data representation in ML. The selection of measured
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variables from the equal variance domain provides a unique solution to the problem of iden-

tification of the source data space.
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F Correlation and Independence

Under practical circumstances the data delivered to an algorithm may be correlated. Gener-

ally, it is the job of the model used in the formulation of the likelihood approach to account

for all expected systematic correlation up to a random independent noise process. However,

likelihood formulations often assume data independence for simplicity. Correlation produces

systematic changes in the residuals of one parameter due to changes in another. This can

be visualised by producing a scatter-plot of the two variables f(x, y). In general for any two

variables to be un-correlated knowledge of one must give no information regarding the other.

In terms of the scatter plot this means that the structure seen must be entirely modelable in

terms of the outer-product of the two marginal distributions:

f(x, y) = f(x) ⊗ f(y)

that is, decomposable. We may wish to preprocess the data to remove these correlations using

Principal Component Analysis in order to conform to the assumption of independence. We

can define the correlation matrix:

R =
∑

j

(Xj − Xm) ⊗ (Xj − Xm)

where Xj is an individual measurement vector from a data set and Xm is the mean vector for

that set.

It can be shown that orthogonal (linearly independent) axes correspond to the eigenvec-

tors Vk of the matrix R. So the solution of the eigenvector equation:

RVk = λkVk

defines the axes of a co-ordinate system Vk which decorrelates the data. The method

known as Singular Value Decomposition (SVD) [19] approximates a matrix by a set of or-

thogonal vectors, Wl, and singular values, wl and it can be shown that the singular vectors

satisfy the eigenvector equation with:

R =
∑

l

1

wl
2
Wl ⊗ Wl

If we multiply both sides of the equation by one of these vectors Wk

RWk =
∑

l

1

wl
2
Wl ⊗ WlWk

we see that the singular vectors satisfy the eigenvector equation with

λk =
1

wk
2
.

Thus, SVD determines the axes of maximal variation within the data. Figure 3(a) shows

a scatter plot of original data, where can be seen that data are correlated. Figure 3(b)

shows rotated data set using determined eigenvectors, hence data are uncorrelated in that

new coordinate system, where eigenvectors are new coordinate axes.
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(a) original (b) rotated

Figure 3: Original and rotated data distributions

A limited approximation to the full matrix R∗

R∗ =
lmax
∑

l

1

wl
2
Wl ⊗ Wl

gives an optimal approximation to the matrix R in the least squares sense (R − R∗)2,

allowing the selection of a reduced number of orthogonal descriptor variables. This process

of principle component analysis is useful for limiting the effects of numerical stability and

singularity during the process of matrix inversion. The equivalence of eigenvectors and prin-

ciple axis means that the eigenvectors align with the axis of maximum variance. This leaves

a minimum variance on the excluded eigen vector directions, effectively a hyperplane fit.
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G Modal Arithmetic

Sometimes the effects of non-linear calculations on data with a noise distribution affects not

only the variance of the computed quantity but also the mean value. From a likelihood point

of view we can define the ideal result from a computation as the most frequent (or modal)

value that would have resulted from data drawn from the expected noise distribution. We

have termed the algorithm design technique which addressed this issue modal arithmetic.

The general method of modal arithmetic for a measured value with distribution D(x) and a

non-linear function f(x) would be to find the solution xmax of

∂[
D(x)

∂f(x)/∂x
]/∂x = 0

with the modal solution of f(xmax).
Modal arithmetic is unconditionally stable, as peaks in probability distributions cannot

occur at infinity. It also has much similarity with some approaches in statistics which advocate

the use of the mode rather than the mean as the most robust indicator of a distributed

variable. The simplest example of this is for image division (e.g. y = 1/x) where small errors

on the data produce instabilities in computations involving large quantities of data. Error

propagation shows that a small change in the input quantity ∆x will give an error on the

corresponding output of

∆y =
∆x

x2

which is clearly unstable for values of x which are comparable to its error. This problem

can be understood better by considering the distribution of computed values from the range

of those available for input. We start by assuming a Gaussian distribution for the denominator

Px∆x = A exp(−(x − x0)
2/2σ2)

Where x0 is the central value of x with a standard deviation of σ.

If we take a small area of data from the probability distribution for x (i.e.: Px∆x), we can

associate this with an equal number of solutions in the output space y (ie: Py∆y) (Figure 4

(a) and (b)) giving:

Py = A x2exp(−(x − x0)
2/2σ2)

This expected probability distribution for y as a function of x (Figure 4(c)) can be differ-

entiated to find its maxima.

∂Py/∂x = 2A exp(−(x − x0)
2/2σ2)(x − x2(x − x0)/2σ

2)

Setting this to zero we can determine the modal values of this distribution:

x2 − x0x − 2σ2 = 0 with xmax =
x0 ±

√

x2
0 + 8σ2

2

which correspond to the positive and negative peaks due to the distribution of x spanning

zero (Figure 4(a)). If we were to ask which value of y would be most likely to result from

the division then the answer would be 1/xmax selected with the same sign as the input value
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Figure 4: Probability Distributions for a noisy denominator.

x0. Taking this value as a replacement for the denominator provides a maximum likelihood

technique of stabilising the process of division using knowledge of measurement accuracy

and could best be described as modal division. Modal division can be used with impunity

for calculations involving large quantities of noisy data without instability problems for val-

ues around zero, with the minimum denominator limited to a value of
√

2σ. In previous

work we were able to show that the application of modal arithmetic to image deconvolution

regenerated the results from the standard likelihood based technique of Weiner filtering [32].
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H Monte-Carlo Techniques

The concept of Monte-Carlo techniques is very simple. A computer simulation is performed

which generates multiple sets of data from within the expected measurement distribution.

These data are then passed through the algorithmic computation and the distributions of

resulting values around their true values accumulated. This way both the systematic errors

(bias) and statistical errors (variance) associated with the algorithm can be assessed. This

is done either by comparing these distributions with results from covariance estmation or

error propogation or by empirical construction of the dependency of the computed values on

the input quantities [29]. These models can then be used to quantify the expected error

distributions on the data when provided as input to other modules.

Key to the success of these techniques is the ability to generate random example of data

drawn from the required distributions. We start by using a random number 0 < x < 1 drawn

from a uniform (flat) distribution. The general technique for generating a variate from the

distribution f(y) using x is to solve for y in

x =

∫ y0

−∞

f(y)dy/

∫

∞

−∞

f(y)dy

i.e. x is used to locate a variable some fraction of the way through the integrated distri-

bution.

For instance, a Gaussian distribution leads to the BOX MULLER method [19];

y1 =
√

(−2ln(x1))cos(2πx2)

y2 =
√

(−2ln(x1))sin(2πx2)

which generates two Gaussian random deviates y1 and y2 for every two input deviates x1

and x2.

Armed with distribution generators we can generate many alternative images for statisti-

cal testing from only a few examples of image data.
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I Hypothesis Testing

Having made quantitative measurements from our system we will ultimately need to make

decisions based upon those measurements in comparison to some predefined model. For

example, do not attempt to move the mobile vehicle through a doorway unless the vision

system estimates that it will pass. Many statistical tests are based on the idea of generating

the probability that data drawn from the expected test distribution would be more frequent

than the example under test. This approach leads to the common statistical techniques of

z-scores, T tests, and Chi-squared tests to name a few. This follows directly from the original

definition of a confidence interval, due to Neyman [16] and yet is rarely used in machine

vision. This is unfortunate, as the methods do not suffer the same restrictions regarding

distributions which apply to covariances.

Hypothesis tests (i.e. does the data conform to the assumed model?) are perfomed on the

basis of one model at a time, in contrast to Bayesian approaches which require all possible

generators (models) of the data. In addition, such statistical tests are fully quantitative.

Probabilities computed from such statistics have the characteristic that the distribution of

values drawn from the assumed model will be flat. This is useful as a mechanism for self

test. The most common form of this statistic is that for a Gaussian and is known as the

error function which is provided as a mathematical function in most languages (e.g. the

erf() library function). However, such statistics can be generated for any model for which

the expected data distribution is known, using the ordering principle. This states that the

ordering of integration along the measurement axis should be defined so that the probability

density is monotonically decreasing. For the Gaussian case shown above this gives the rather

trivial result that we integrate along the standard measurement axis x away from the peak,

as the function is monotonically decreasing from x = 0. Although this is not the only way to

order the data (there are potentialy infinite numbers of equivalent possible ordering schemes

depending upon how we define our variables e.g. x2) this is the one which gives confidence

limits which are maximally compact in the chosen parameter domain. Generally, the preferred

parameter domain would be selected as the space in which x was uniformly accurate, so that

this compactness has meaning from the point of view of measureable localisation. This is

sometimes referred to as a “natural” parameterisation and is related to the concept of the

equal variance transform (appendix E).

In image processing the required distributions can often be bootstrapped directly from

the image (e.g. as in [5]). Under these circumstances the possibility of multi-modal density

functions makes the application of the ordering principle slightly less straightforward.

Finally, as the only requirement for the use of such probabilities is that they have a uniform

distribution, empirical approaches can be used to re-flatten distributions which result from

imprecise analysis. Such hypothesis tests are also easily combined using standard statistical

approaches (See appendix K).
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J Honest Probabilities

The correct use of statistics in algorithm design should be fully quantitative. Probabilities

should correspond to a genuine prediction of data frequency. From the point of view of al-

gorithmic evaluation, if an algorithm does not make quantitative predictions then it is by

definition untestable in any meaningful manner. Thus a classifier which giving a probability

of a particular class as P should be wrong 1 − P of the time. Probabilities with these char-

acteristics have previously been referred to in the literature as honest [7]. The importance of

this feature in relation to the work presented here is that knowledge of the expected distribu-

tion for the output provides a mechanism for self-test. For example classifier error rates can

be assessed as a function of probability to confirm the expected correlation. Some approaches

to pattern recognition, such as k-nearest neighbours, are almost guaranteed to be honest by

construction. In addition the concept of honesty provides a very powerful way of assessing

the validity of probabilistic approaches [18].

Supervised classification performance, for example object recognition, can be specified

in terms of the confusion matrix. This is table that describes the probabilities that an item of

class i will be misclassified as an item of class j for each of a set of classes. The sum of each

of the rows and columns should add up to 1.0.

class 1 class 2 class 3 class 4

class 1 1.0 0.0 0.0 0.0

class 2 0.0 0.8 0.15 0.05

class 3 0.0 0.15 0.35 0.5

class 4 0.0 0.05 0.5 0.45

Table 1: Confusion Matrix

A perfect classifier would have value of 1.0 along the diagonal where i = j and zero else-

where. However, a real classifier would have some off-diagonal elements, as in this example.

Note that the table is not necessarily symmetrical. The classification algorithm might also

specify a rejection rate at which it will refuse to produce a valid class output. For the proba-

blilities delivered by a classification system to be honest, the mean probability generated for

each position in the confusion matrix should agree with the relative frequency of the sampled

data. For example in the table given above class 1 should always be identified with 100% clas-

sification probability. This is rather a strong claim for any empirical estimate of performance

and should at least be accompanied by the number of samples in the test set 5.

A technology evaluation would provide an unweighted table, but a scenario evaluation

would weight the entries to take account of the prior probabilities of the various objects,

according to a particular application and the cost of various types of error, to produce an

overall number for ranking.

5Tests with N samples should restrict themselves to claims of only (1 - 1/N ).
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K Data Fusion

Optimal Combination using Covariances

Given two estimates of a set of parameters a1 and a2 and their covariances (α1 and α2) we

can combine the two sets of data as follows:

aT = α−1
T (α1a1 + α2a2) with α−1

T = α−1
1 + α−1

2

This method combines the data in the least squares sense, that is the approximation to

the χ2 stored in the covariance matrices has been combined directly to give the minimum of

the quadratic form. The method can be rewritten slightly giving

aT = a1 + α−1
T α2∆a

where ∆a = a2 −a1. This form is directly comparable to the information filter form of the

Kalman filter.

Optimal Combination of Hypothesis Tests

Hypothesis test probabilities should have uniform distributions (if they are honest). Given n

quantities each having a uniform probability distribution pi=1,n, the product p =
∏n

i=1 pi can

be renormalised to have a uniform probability distribution Fn(p) using:

Fn(p) = p
n−1
∑

i=0

(− ln p)i

i!
(1)

Proof of this relationship can be generated in the following manner. The quantities pi

can be plotted on the axes of an n dimensional sample space, bounded by the unit hyper-

cube. Since they are uniform, and assuming no spatial correlation, the sample space will

be uniformly populated. Therefore, the transformation to Fn(p) such that this quantity has

a uniform probability distribution can be achieved using the probability integral transform,

replacing any point in the sample space p with the integral of the volume under the con-

tour of constant p. Generalisation of this process to non-integer numbers (which is useful for

cases where we have an effective number of degrees of freedom) and other useful results are

presented in [3].

Optimal Combination from Example Data

When the area of neural networks re-emerged as a popular topic in the mid 80’s much was

claimed about the expected capabilities regarding flexibility, suitability for system identifica-

tion and robustness. Most of these claims were subsequently shown to be optimistic. How-

ever, one problem that neural networks are relatively good at is non-linear data fusion. A

neural network when trained on an appropriate form of data with the correct algorithm will

approximate Bayes probabilities as outputs.

The mathematics describing this process is given in [12] but a more intuitive argument

is as follows. Each input vector pattern X defines a unique point in input space. Associated

with each data point is the ideal required output, for example a binary output classification.

As the number of samples grows large the number of examples of data in the region of each
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point also grows large. If training with a least squares error function the target output for

each point in pattern space will be the mean of local values. For a binary coding problem the

mean value is the Bayes probability of the model given the data.

Given P (A|B) and P (A|C) can we compute P (A|BC)? We can clearly solve this prob-

lem provided these probabilities are independent by simple multiplication. If however the

measures are correlated there is no standard statistical method for this process. This is unfor-

tunate as we would expect a modular (AI) decision system to need to solve this task. Stan-

dard neural network architectures trained in the standard way will however approximate

P (A|P (A|B)P (A|C)) for the reasons described above [1]. Provided that there is enough

information in the set of probabilities being fused to regenerate the original data the fusion

process will be able to achieve optimality.
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L Reciever Operator Curves

Scenario evaluations in machine vision often result in the problem of establishing how well

an algorithm can identify a particular situation in the image. The simplest example of this

problem is a feature detector. Feature detection reliability has two elements: the probability

of the detection of a true feature (True Acceptance Rate or TAR), and the probability of the

detector signalling a feature which is in fact absent (False Acceptance Rate or FAR). These

may be represented as two probability density functions (pdf): the signal and the non-signal

pdfs.

THRESHOLD

NON SIGNAL pdf

SIGNAL strength

SIGNAL pdf

FR
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Q
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E
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C
Y

true detection region

false detection region

Figure 5: signal and non-signal detection pdfs

A feature detector generally has a threshold which allows a trade off to be made between

the two types of error. For a given threshold the true acceptance rate will be the area under

the curve of the signal pdf and to the right of the threshold, whereas the false acceptance rate

is the area under the curve of the non-signal pdf and to the right of the threshold. This gives

rise to two extreme situations. If the threshold is set to the far left, the detector will accept

all the signal but also all non-signal, so both TAR and FAR will be high. If the threshold is set

to the far right, the detector will reject all non-signals, but also reject all true signals, so both

TAR and FAR will be low. It is important to appreciate that for detection algorithms there is

always a trade off between true and false detection.

An understanding the behaviour of a feature detection algorithm as the threshold is varied

can be obtained by plotting an ROC (receiver operating characteristic) curve.

In the ROC curve 6, one axis represents the True Acceptance Rate (TAR) and the other

represents the False Acceptance Rate (FAR) 7. Each runs from 0% to 100%. The performance

of a given detection algorithm may be described in terms of a line passing through various

combinations of TAR and FAR. The ideal algorithm would be one with a line that passes as

close as possible to the point TAR=100% and FAR=0%. The precise location along the line

is determined by the setting of the threshold parameter described earlier. The setting of the

threshold is made on the basis of the consequence of each type of error (Bayes risk), and this

will depend on the use of the results and thus the application, subject to prior probabilites of

the signal and non-signal.

The performance of detection algorithms is sometimes quoted in terms of the equal error

6note that there appear to be no conventions as to the orientation of the plot
7a number of alternative forms are used such as reject rate which is (1 - acceptance rate)

29



TAR (True Acceptance Rate) 0%100%

FA
R

 (
Fa

ls
e 

A
cc

ep
ta

nc
e 

R
at

e)
0%

10
0%

algorithm C
algorithm A

algorithm B

EER for 
algorithm B

Figure 6: Receiver Operator Curve

rate (EER). This is the point at which the FAR is equal to the True Reject Rate (TRR=1-TAR).

This may be appropriate for some applications in which the cost of each type of error is equal.

However this is not generally the case so access to the entire ROC curve is preferred.

In contrast to the earlier pdf diagram, the performance of different algorithms may be

presented on the same plot and thus compared. For a given application (and thus TAR/FAR

trade off) one algorithm may be superior to another according to the desired position along

the ROC curve. For instance algorithm B may be superior to algorithm A when a low FAR is

required. Conversely algorithm A will be preferred when a high TAR is required. Algorithm C

on the other hand provides superior performance to both algorithm A and algorithm B since

for each value of FAR, algorithm C will have a higher level of TAR.

Notice the difference between the ROC plot that presents the performance characteristics

of a number of algorithms (the result of a technology evaluation), and the decision as to

which is the best and how it should be tuned, which is based on the use of this information

(scenario evaluation). Of course the ROC curve is only as good as the data used to generate

it, and a curve produced using unrepresentative data will not be applicable to the task.

There are variants of the ROC curve. If the task is to identify the features in an image,

and it is possible that there will be more than one, then a fractional ROC (FROC) is more

appropriate. This plots the total number of false detection (since there may be more than

one) against the probability of a true detection as before.

The fact that every detection algorithm involves a trade off between true and false detec-

tions has the consequence that false detections must be tolerated by the subsequent process-

ing stages.
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