
Noise Filtering and Testing for MR Using a

Multi-Dimensional Partial Volume Model

N.A.Thacker and M.Pokrić
Imaging Science and Biomedical Engineering Division,

Medical School, University of Manchester,
Stopford Building, Oxford Road,

Manchester, M13 9PT

23 October 2003

Abstract

One of the most common problems in image analysis is the estimation and removal of

noise or other artefacts (e.g., grey level quantization) using spatial filters. Common tech-

niques include Gaussian Filtering, Median Filtering and Anisotropic Filtering. Though
these techniques are quite common in the image processing literature they must be used

with great care on medical data, as it is very easy to introduce artifact into images due to

spatial smoothing. The use of such techniques is further restricted by the absence of gold
standard data against which to test the behaviour of the filters. Following a general dis-

cussion of the equivalence of filtering techniques to likelihood based estimation using an
assumed model, this paper describes an approach to noise filtering in multi-dimensional

data using a partial volume data density model. The resulting data sets can then be taken

as gold standard data for spatial filtering techniques which use the information from sin-
gle images. We explain how such data has advantages over data generated purely by

simulation when testing alternative algorithms.

1 Introduction

Noise filtering on any data involves the assumption of a specific image generation mechanism

(or image model). The process of Gaussian smoothing for example can be interpreted as

consistent with a likelihood estimation of the central value within a region. This is done on

the assumption that the data within this region can be described by some functional model

with the expected grey level residuals being drawn from a Gaussian noise distribution with

variance inversely proportional to the spatial Gaussian weighting term. The specific form of

the assumed model is best understood by considering a more simplistic problem first.

Gaussian filtering removes high spatial frequency content from the structure of images.

A less destructive approach to noise filtering is based on the concept of anisotropic filtering,

where the data is preferentially smoothed along a direction selected in order to minimise

the loss of spatial structure in the image. One particular variant of this we call ‘Tangential

Filtering’. Here, the tangential direction to the local image slope is computed and the data

is smoothed by taking the weighted average of two points along this line situated one pixel

away from the central value. It is relatively straight forward to see that averaging of multiple
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values in this way assumes that the data can locally be fitted to a 1D line and selection of

the tangential direction results in the least destructive impact on edge structure. In fact any

anti-symmetric function will result in an appropriate central estimate, and this can be taken

as the most general assumtion for the underlying image model at each point. We can also

see that for an average of two points the noise in the resulting image should be reduced by

typically a factor of
√

2 of the original image noise.
√

3 if we also include the central value in

the estimate.

Returning to Gaussian filtering, we can interpret this process as an averaging of multiple

estimations of the central value for any pair of pixels with equal weight in the Gaussian ker-

nal. The class of functions for which this would be an appropriate model would include Carte-

sian polynomials (expanded as a function of shifts (x, y)) from the central location (x0, y0),
either with no even terms, or at least exact cancellation of the magnitudes of even power

co-efficients. For example:

I(x − x0, y − y0) = a + bx + cy + dxy + ex2 − ey2 + . . .

Though the only global function for which the model would work correctly at every image

location would be an inclined plane. When described in this way it is easy to see the over-

simplicity of this model in comparison to the structures found in real medical images. It is

this which results in the characteristic problems with Gaussian filtering of image smoothing

and the loss of sharp edge structures.

For particular applications of MR analysis, and in particular structural analysis, we would

like to be able to assess the performance of these filters, and their ability to give the best esti-

mate of the noise free image. Unfortunately, the only data which we generaly have available

with which to test these algorithms are simulated data based upon a simplified model of im-

age formation and tissue distribution (e.g., BRAINWEB [1, 2]). While we can say which filter

will perform best on this simulated data, we cannot know that the data under test is a good

surrogate for all of the formation processes seen in real images or for the specific structures

seen in the particular images we wish to analyse.

As a direct contrast to spatial image filtering, which assumes specific forms of spatial cor-

relation between grey level values, multi-dimensional tissue segmentation algorithms rely in-

stead upon corellations between multiple measurements of the same physical location (voxel)

using different imaging modalities. The typical approach involves building a model not of spa-

tial structure but of grey level density distribution. Such models can also be used as the basis

for noise removal. A common form of noise removal which makes use of greylevel density

distribution is the median filter, which can be considered as a bootstrapped likelihood esti-

mator. While many authors have concentrated on the use of grey level density estimation for

tissue labelling, estimates of tissue volume proportion (as presented in our previous work [3])

can be used to predict the original image content for each modality in the case of zero noise.

The process is simply one of using the estimated model parameters to generate the expected

grey level values, using the linear equations implicit in the segmentation. Thus multi-spectral

segmentation can be used as the basis for noise filtering.

Many readers may find the interpretation of filtering methods from a perspective of a

model based estimation process unusual. However, one advantage of this approach is that

explicit identification of the assumed model makes it possible to begin to consider testing

the conformity of the data under analysis to the model. This is something which has not

generally been tested for spatial filtering approaches. As we will show below this can be used
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to prevent noise removal in un-modelled parts of the data, i.e. pathology. In addition, we will

demonstrate how the results from multi-spectral noise filtering are useable as a gold standard

for spatial fitering techniques.

2 Methods

Multi-dimensional Gaussian distributions are used to model the effects of both inherent tissue

variability and measurement noise for pure tissues. A multi-variate Gaussian distribution for

multi-dimensional data g for each pure tissue t is defined as:

dt(g) = αte
− 1

2
(g−mt)T Ct(g−mt)

where mt is a mean tissue vector, Ct is inverse of a covariance matrix and αt is a constant

which gives unit normalisation.

Using an assumption of a linear image formation process, whereby the total intensity level

at each voxel results from summation of different tissue fractions present at that particular

voxel, the partial volume distribution can be thought of as being composed of two triangular

distributions convolved with a Gaussian (Tts(g) + Tst(g)). Where Tts(g) is the local density

estimate for tissue t generated by a partial voluming process with tissue s. Assuming that tis-

sue variability is more significant than the measurement processes, multi-dimensional partial

volume distributions can be modelled along the line between two pure tissue means mt and

ms:

dts(g) = βtsTts(h)e−(g−h.g/|h|)T Ch(g−h.g/|h|)

where the parameters for the given data g are: h is a fractional distance between two centres

of distribution [0 < h < 1]; h = (g − ms)Ch(mt − ms)/|(Mt − ms)Ch(mt − ms)|; Ch is

a covariance matrix: Ch = Cth + Cs(1 − h); Tts(h) is the 1D partial volume distribution

between pure tissues t and s; and βts is a constant which gives unit normalisation.

The 1D partial volume distribution, Tts, obtained by convolving a triangular distribution

normalised to 1
2 with Gaussian distribution normalised to 1, takes the following form [4]:

Tts(x) = −kx + c

2

{

erf

(

x − b

σ
√

2

)

− erf

(

x − a

σ
√

2

)}

− Mσ√
2π

{

exp

(

−(x − b)2

2σ2

)

− exp

(

−(x − a)2

2σ2

)}

(1)

where: x is a grey level value calculated as a normal projection of vector g onto line between

two distribution means; k and c are the slope and intercept of the line which forms the

triangle; a and b are the start and end points of an interval at which the triangular distribution

has a non-zero value; and σ is a standard deviation of a Gaussian function.

The overall partial volume distribution is calculated as a product of a Gaussian function

of the normal distance (g−h.g/|h|) from two distribution centres and the 1D partial volume

distribution Tts(h). Examples of the types of distributions obtained from the model parame-

ters of two images for three pure tissues and their partial volumes are shown in Figure 1. It

can be seen that pure tissue distribution models take the form of elliptical features, while the

partial volumes are shown as elongated structures between centres of distributions.

Parameters of the model can be iteratively estimated using the Expectation Maximisation

(EM) approach [5, 6]. EM is used to estimate the parameters by maximising the likelihood

of the data distribution. This involves first getting from the likelihood distributions defined
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(a) (b)

Figure 1: An example of distributions generated from the model for two images (a) Pure

tissue distributions (b) Combined distributions of pure tissues and partial volumes between

centres of pure tissues

above to a probability of a given tissue proportion given the data P (t|gv). The conditional

probability of a grey level being due to a certain mechanism n (either a pure or mixture tissue

component) can be calculated using Bayes theory, as follows:

P (n|g) =
dn(g)fn

∑

t(fO + dt(g)ft) +
∑

t

∑

s dts(g)fts

where fn, fO, ft and fts are effectively "priors", expressed here as frequencies (i.e. number

of voxels) which belong to a particular tissue type, pure tissues or partial volumes. Unknown

tissues are accounted for in the Bayesian formulation by including a fixed extra term fO

for infrequently occuring outlier data [7] in total probability which enables separation of

pathological tissues.

Noise-free estimates of the individual image greylevels g′i can be calculated using

g′i = gi P (O|g) +
∑

t

git P (t|g) +
∑

t

∑

s

git P (ts|g)

where git is the expected pure tissue grey level for image i. This formulation implicitly reverts

to the original image greylevel for outlier data (large P (O|g)). In addition, failure to model

individual voxels can be identified by checking for consistency between the filtered image

and original. In particular, any reconstructed greylevel value which differs from the original

by more than 3 standard deviation of the image noise can be said to be inconsistent with

the model. This value can then be replaced with the original value in order to preserve all

significant information present in the original image. Further evaluation of this technique

is of course difficult without a gold standard, however the stability (noise sensitivity) of the

filtering technique can be assesed using Monte-Carlo techniques.

3 Results

Original and reconstructed images following co-registration and partial volume analysis are

shown in Figure 2.

The noise level (σoriginal) in each image was estimated from the width of the central

peak in the distribution of second spatial derivatives . This process is known to slightly

overestimate the noise due to genuine 2nd order structure. In addition, an estimate of the
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(a) Inversion Recovery

Turbo Spin Echo

(b) Variable Echo (PD) (c) Variable Echo (T2)

(d) FLAIR (e) Filtered IRTSE (f) Filtered VE (PD)

(g) Filtered VE (T2) (h) Filtered FLAIR

Figure 2: Image Sequences and Partial Volume Filtered Counterparts
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IRTSE VE(PD) VE(T2) FLAIR

σoriginal 58.67 64.06 58.25 52.42

σoriginal−filt 50.9 48.2 40.6 47.1

M − C noise 0.22 0.20 0.17 0.13

No pixels 1689 1804 938 4971

Table 1: Quantitative Perfomance of Partial Volume Noise Filtering

Median Filtering Gaussian Smoothing Tangential Smoothing

σfilt−ref No pixels σfilt−ref No pixels σfilt−ref No pixels

IRTSE 35.22 1612 33.10 2741 36.41 1084

VE(PD) 28.20 1742 25.54 3847 28.02 1140

VE(T2) 23.83 1302 18.69 2129 21.77 761

FLAIR 33.69 2248 29.05 4325 34.22 1654

Table 2: Quantitative Perfomance of Spatial Filtering

quantity of noise removed from each image can be estimated from the difference between the

partial volume noise filtered image and the original σoriginal−filt. The Monte-carlo stability

analysis involved adding Gaussian random noise to the original image and observing the

fraction of noise remaining after filtering (M-C noise in Table 1). This represents the true

noise reduction for data which was generated by the assumed image formation model and

can be used to estimate the amount of noise remaining in the noise filtered image. The

numbers of voxels lying beyond 3 S.D. of the model are listed in Table 1 (the outlier term was

fixed at zero for these experiments).

Following partial volume filtering the voxels inconsistent with the original data at the 3

S.D. level were replaced with their original values. The resulting images were then used as

the basis for evaluation of spatial filtering techniques applied to the original images (Table 2).

Tangential filtering was applied as described in the introduction. Gaussian filtering was for

spatial filter with S.D. of 1 pixel. Median filtering was over the local neighbourhood of 9

pixels.

4 Discussion and Conclusions

This paper has shown how techniques generally used for tissue segmentation can be used

to provide noise filtering of multi-spectral images based upon an analysis of partial volume

structure. Though this may sound a very complicated process, it can be considered as a simple

regression onto the lines joining pairs of pure tissue locations in the multi-dimensional grey

level space, followed by a weighting with pure tissue values according to the Bayesian priors.

Any voxels composed of pure tisses of appropriate mean values will therefore have the noise

on each grey level removed in such a way as to make the grey level value more consistent

with the estimated position along this partial volume line (Figure 3). The results of such

an analysis can be also interpretted as a method of data fusion, where data from alternative

modalities are combined in order to improve the data from each. The results demonstrate
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(a) (b) (c)

(d)

Figure 3: Grey Level Distributions before (a) and after (b) Partial Volume Noise Filtering for

IRTSE and VE(PD) images, and before (c) and after (d) Partial Volume Noise Filtering for

VE(T2) and FLAIR images

that such an approach does not produce the loss of high spatial frequency structure inherrent

in even the most careful spatial filtering schemes. In addition, unlike techniques based upon

spatial filtering, the model used for noise filtering is explicit and testable. In particular it is

possible to identify any pixels which are not consistent with the assumed model and then

exclude these from the filtering process. This represents a considerable step towards use of

filtering techiques in clinical applications which include pathology.

There is a subtle but important difference between using models based upon spatial dis-

tribution and those based upon partial volume behaviour for MR analysis. The former can

only be determined from example data and there can never be a spatial model which will

be appropriate for the contents of all biological images. Grey level density models however,

have statistical characteristics which are purely determined by the acquisition process (ie: the

underlying physics of the measurement process). We might therefore expect that if we knew

enough about the image formation process for a particular imaging protocol we may be able

to construcut a model which is true for all images from a particular acquisition containing

equivalent tissue types. This approach to filtering may therefore be regarded as a gold stan-

dard for testing of spatial filtering techniques. In the work here we have used all images

in the EM based reconstructed image used for the test. In general we would expect this to

introduce a slight bias in the evaluation process towards the specific noise characteristics in

each image as the estimate of the gold standard is not strictly independant of the test image.

If it was believed that this were a source of significant error then the problem could easily be
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avoided, either by repeated acquision of the test data, so that a truly independant image was

available for spatial filtering, or by excluding the test image from the EM segmentation prior

to reconstruction. However, the combined effects of the use of multiple modalities and the

effects of spatial filtering are expected to reduce the significance of these effects, and relative

performance between alternative algortihms are expected to be valid.

In comparison to other mechanisms for the generation of test data, the most commonly

used technique is probably the BRAINWEB simulation. This can be thought of as equivalent

to the final stages of the reconstruction process presented here, except that their volume esti-

mation process is based upon a "fuzzy" class membership process, not explicit partial volume

estimation, and of course they have one fixed model. Our aproach raises the possibility of

generating personalised models with checks on the validity of the reconstruction process.

Software and test data available on the web [8].
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