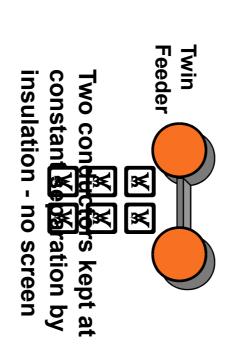

Chelmsford Amateur Radio Society

(5) Feeders & Antennas Foundation Course


Feeders

Two basic feeder types: Coax, Twin Wire

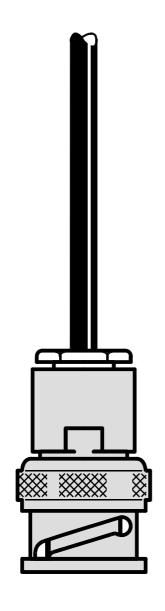
Inner Conductor is shrouded by dielectric, with outer (braided) screen.

For Radio 50% Coax is used (TV is 75%)

Balanced Feeder

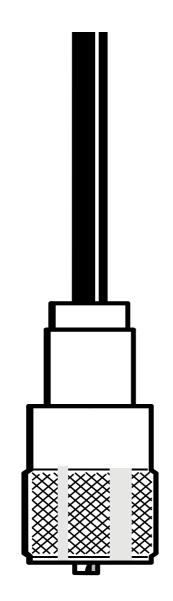
Balanced/Unbalanced

- Coax is unbalanced Inner has voltage, Outer is earthed.
- Coax is widely used as its outer acts as a screen
- Twin feeder is balanced conductors have equal and opposite voltages/currents/fields
- balun is needed. antenna (eg coax feeding a dipole) a transformer known as a In order to connect an unbalanced feeder to a balanced
- **BALUN: BALanced UNbalanced**
- Without a Balun rf currents flow on the outside braid, and the screening properties of coax are lost


Coax Connectors

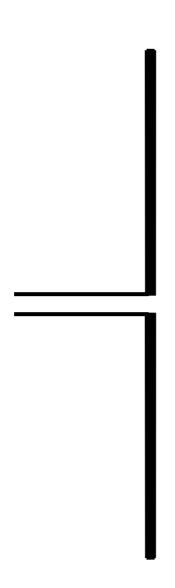
- A wide variety of connectors exist.
- Common RF Connectors include BNC, PL259, N-type, SMA etc.
- Ensure both the inner conductor and outer braid are assembled correctly.
- Poor condition connectors are a major cause of bad SWRs etc.
- Screening must be continuous through plugs and sockets.
- Foundation Licence requires good understanding of two connectors - BNC, PL259.

BNC Connectors


- BNC Connectors have a Bayonet locking action and are commonly used for lower power interconnections
- which have different inner pin sizes. Take care not to mix incompatible 50 and 75 Ohm versions

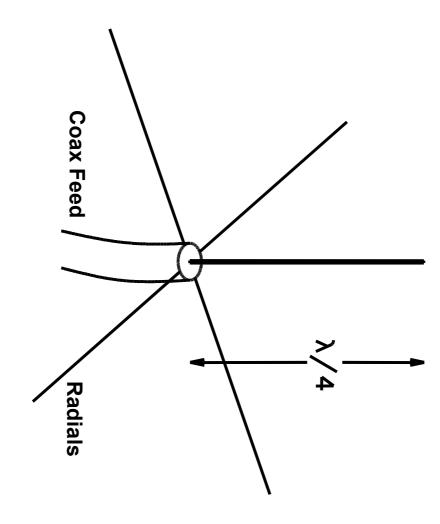
PL259 Connectors

Common HF/VHF connector with reasonable power handling.

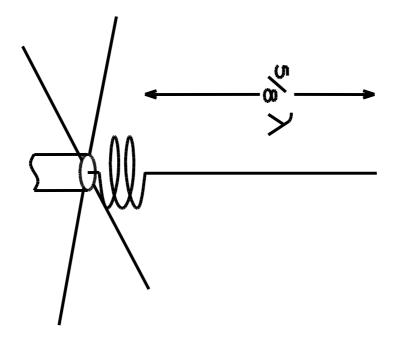

Antennas

- Antennas transform AC signals into propagating radio waves.
- Gain is the directing of power in the wanted direction
- Need to know the following types:-
- Dipole
- Quarterwave ground plane
- Five-eighths ground plane
- Yagi
- End-fed wire
- Antenna size is determined by the operating wavelength, ~.
- Example: a 2m -₩4 is a third of the size of a 6m₩-/4.

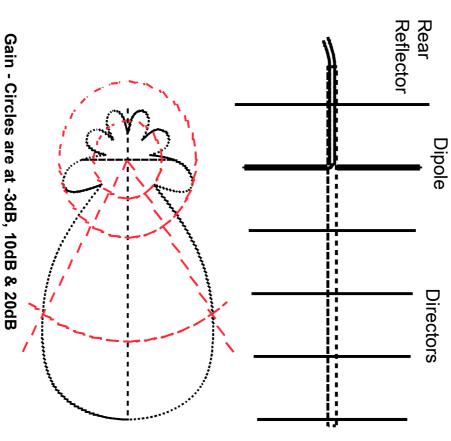
Dipole


- Simple but requires a balanced feed via a balun.
- Each leg is -/4 long -/2 across in total.

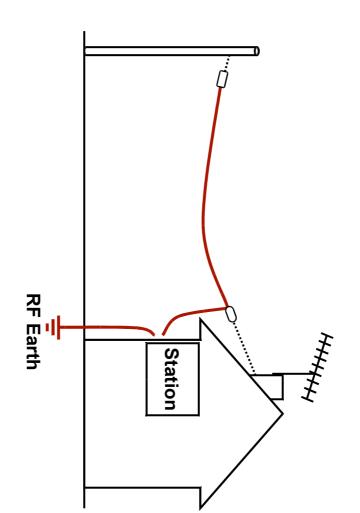
Quarter Wave: -/4


- Radials simulate a groundplane and are also -/4 long
- Sometimes called a 'groundplane' antenna

Five-Eighths: 5-/8


- 5-/8 Common antenna for mobile use
- Better impedance match and gain than basic quarterwave
- Radials emulate groundplane like the quarterwave

ragi


- Dipole acts as pick up
- to give Gain
- Rear Reflector gives back/front isolation
- Yagis may be horizontal or vertical

End Fed Antennas

- Common at HF where wavelengths are long
- Needs an ATU to match it for HF multiple bands
- Is unbalanced
- Has strong RF voltages and currents near the house. These are likely to couple into TV and other equipment and cause EMC problems

Gain/ERP

- **ERP = Effective Radiated Power**
- ERP is the power radiated in the direction of the maximum radiation
- ERP is the product of the power supplied to the antenna, multiplied by the gain of the antenna.
- ERP = Power x Gain (in linear units, not dB)

Polarisation

- Polarisation is the plane of the antennas radiating electric field.
- Common polarisations are Horizontal and Vertical.
- Transmitter and receiving antenna polarisations need to match for optimum signal strength.
- Verticals (-/4, 5-/8) give vertical polarisation.
- Yagis and Dipoles may be either horizontal or vertical depending on their mounting.
- In complex situations polarisation can rotate.

Antenna Match - SWR

- Antennas must be suited for the frequency of the transmitted signal. This is a challenge for multiband operation.
- SWR Standing Wave Ratio is a measure of the mismatch of the antenna system to the nominal impedance of the radio
- A high SWR will result in Output Power being reflected back to the Transceiver - Inefficient and Potentially Damaging
- At HF most antennas are not matched for the wide range of trequency bands, unless a matching unit is used
- SWR Meters are valuable for checking correct antenna design, installation and operation - and indicating faults
- Dummy Loads permit radio tests without radiating a signal