

Chelmsford Amateur Radio Society

(3) Technical Basics Foundation Course

Introduction

- Important to appreciate and understand basic electric and rf symbols, units and concepts
- You don't need to be a circuit designer/builder!
- that comes from experience and as you progress through the Intermediate and Advanced Courses
- For Foundation it important to understand:-
- Conductors and Insulators
- Volts, Current, Power and Resistance
- Frequencies and Wavelengths
- Basic symbols/diagrams

Conductors & Insulators

- Conducts permit the flow of electric current
- Examples: Copper, Brass etc
- Metallic Conductors permit electrons to flow easily
- Beware of poor/oxidised connections (eg on Aluminium, Steel)
- Insulators don't permit electron flow and exhibit high resistance
- Examples: Plastics, wood, rubber, glass, ceramics
- Note that water is a conductor (esp. when impure), and that wet insulators can therefore conduct on their surface
- This can be a risk for outdoor/portable equipment

Electrical Units

Quantity	<u>Unit</u>	Symbol
Voltage, V	Volt	<
Current, I	Amp	A
Resistance, R	Ohm	x
Power, P	Watt	¥
Frequency, f	Hertz	Hz
Wavelength, -	Metre	3

Note-1: Resistance is the opposition to current flow

Note-2: Voltage is sometimes referred to as Potential Difference

Unit Prefixes

<u>Factor</u>

millionths

thousandths

thousands

millions

Mega

Prefix

<u>Symbol</u>

micro

₩ wor u

3

3

_

Examples:

4.7k\\| | | | | | | 4700\|

1500 mA = 1.5 A

0.6MHz = 600kHz

500mW = 0.5W

Power

Relates Power, P Voltage, V Current, I P=VxI V=P/I I=P/V

Ohms Law

Relates Voltage, V Current, I V=IxR I=V/R R=V/I

Resistance, R

Chelmsford Amateur Radio Society Foundation Licence Course

Murray Niman G6JYB

Slide Set 3: v1.2, 10-Jan-2009 (3) Technical Basic*

DC & AC Power

DC - Direct Current

- Cells/Batteries provide a source of DC power
- Direct Current flows in a single direction

AC - Alternating Current

- AC is easier to generate and transform
- Mains is 50Hz AC. Radio Frequencies (RF) use High Frequency AC
- Simple items such as Filament Light Bulbs work with AC and DC, but many electronic components are sensitive to the direction of current

Frequency & Wavelength

- In air the velocity, v of radio waves is a constant (~3x108m/s)
- So if the frequency increases, the wavelength decreases, and vice versa, determined by: $v = f \times -$
- A 1MHz to 1000MHz conversion chart, and frequency allocation

Circuit Symbols

